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Portraits of complex networks
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Abstract – We propose a method for characterizing large complex networks by introducing a
new matrix structure, unique for a given network, which encodes structural information; provides
useful visualization, even for very large networks; and allows for rigorous statistical comparison
between networks. Dynamic processes such as percolation can be visualized using animation.
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Introduction. – Large, complex stochastic networks
are conspicuous in science and everyday life and have
attracted a great deal of interest [1–3]. A difficult problem
when studying networks is that of comparison and identi-
fication. Given two networks, how similar are they? Could
they have arisen from the same generating mechanism?
Given a real-world network, such as a protein-protein
interaction network, or an electric power grid, say, how can
one determine which stochastic network model most accu-
rately captures its relevant structure? Is there a reasonable
way to illustrate what a particular network looks like?
A network, or graph, is characterized completely by

its adjacency matrix —an N ×N matrix whose nonzero
entries denote the various links between the graph’s N
nodes. This representation, however, is not unique, in that
it depends on the actual labeling of the nodes, and graph
isomorphs (identical graphs with permuted labels) cannot
be readily distinguished from one another [4]. The same is
true of graphical representations, where node placement is
arbitrary (fig. 1).
In this letter, we propose a new method for recogniz-

ing and characterizing large complex networks that is
independent of labeling and circumvents the problem of
graph isomorphism. For each network we compute its
B-matrix: a signature that represents the network reli-
ably and serves as its “portrait.” We thus have a means
for recognizing networks at a glance and judge their
differences and similarities, for the first time, enormously
increasing our understanding and intuition [5]. We also
introduce a “distance,” derived from the B-matrix, that
quantifies network differences, rendering comparisons
mathematically meaningful. One important application
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Fig. 1: Planar embeddings and adjacency matrices for a small
network. It is difficult to tell visually that these represent the
same network, even at such a small size.

is to the comparison of phylogenetic trees representing
various organisms [6].

Portraits. – A graph G consists of a finite set of nodes,
or vertices, V = {v1, v2, ..., vN}, and a set of edges, or links,
between pairs of vertices, E = {(vi, vj)}. In applications,
the vertices label elements of a network, and edges denote
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relationships between elements. The number of links, ki,
connected to a vertex vi is the degree of the vertex.
Much recent interest has focused on scale-free networks,
which exhibit a power law degree distribution, P (k)∼ k−γ .
Despite its strong influence on various properties, the
degree distribution is but one of many characteristics. Two
large networks may possess similar degree distributions yet
differ widely in clustering (the extent to which neighbors
of a node connect to one another) [1], assortativity (the
frequency of connections between nodes of like degrees) [7],
and other important properties.
We now introduce the B-matrix. Define the distance

between two nodes as the smallest number of links
connecting them, found using Breadth-First Search
(BFS) [8]. Thus, a node vi is surrounded by �-shells: the
subsets of nodes at distance � from vi. Let

B�,k= number of nodes that have exactly k

members in their respective �-shells. (1)

Note that B is independent of node labeling: all isomorphs
of a graph have exactly the same B-matrix. Enumerating
the shell members of a specific node requires O(N) steps
for a sparse graph [8], thus construction of the B-matrix
requires O(N2) steps. Example B-matrices are shown in
figs. 2–8 and discussed in the results section.
It is easy to see, from (1), that the degree distribution

of a graph is encoded in the first row of its B-matrix,

B1,k =NP (k), (2)

since the degree of a node equals the number of neighbors
in its �= 1 shell. Generalizing this concept, we define the
degree of order � of a node as the number of members in
its �-th shell. Then, row � of the B-matrix lists the graph’s
distribution of degrees of order �:

B�,k =NP�(k). (3)

Consider a maximally random network, constructed by
the Molloy-Reed algorithm [9]. Its structure is fully deter-
mined by its (first-order) degree distribution, or by the
first row of its B-matrix. For example, the second row is

B2,k =
∑
l

B1,l
∑

j1,j2,...,jl
j1+j2+···+jl=k+l

(pj1 + pj2 + · · ·+ pjl), (4)

where pm ≡mB1,m/
∑
n nB1,n. Thus the B-matrix con-

tains much additional information beyond the degree
distribution, encoded in the difference between the actual
B2,k and the expression (4) (and similarly for higher rows).

Results. – The intuition one gains simply by looking
at these portraits is of great value [5]. Classification and
comparison are immediate (figs. 5, 7). Dimensionality
and regularity are encoded in the overall slope and row
variances (fig. 6), while small-world behavior is displayed
in the “aspect ratio” (fig. 4). Even correlation effects are

(a)

(b)

Fig. 2: (Color online) (a) A B-Matrix with a logarithmic color
scale (the white background indicates zero elements of B).
The degree distribution is slightly visible in the first row.
The “turning point” about row 4 represents finite-size effects.
Shown is the network of the 10% most connected actors on
IMDB [2]. (b) The same matrix with a logarithmic horizontal
axis. The degree distribution is now clearly visible.

discernable in the fine scale structure of the higher rows
(fig. 8). Properties such as assortativity were previously
impossible to visualize for even moderately sized networks.
Here is a list summarizing the contents and “moral of

the story” for each panel, numbered by figure:

2. The algorithm is cheap enough to visualize very large
matrices, as indicated by this example and its nearly
30000 columns. This also shows that a large amount
of information is present in the matrix, far beyond
the degree distribution encoded in the first row.

3. A large random network’s B-matrix looks like the
average of an ensemble of such networks (of the
same size) (panels a,b). A phase transition such as
percolation is immediately visible (c,d).

68004-p2



Portraits of complex networks

(a)

(c) (d)

(b)

Fig. 3: (Color online) Erdős-Rényi (ER) graphs [10]. (a) One
graph with N = 1000 nodes and p= 0.008. (b) The average of
100 graphs from (a). Visualizing percolation:N = 104 (c) below
percolation, p= (1.1N)−1; (d) at percolation, p= 1/N .

(a) (b)

(c) (d)

Fig. 4: (Color online) The emergence of small world. Shown
are Newman-Watts-Strogatz graphs [11] with N = 1000; k= 4;
and p= 1/20, 1/10, 1/5, and 2/5; (a)–(d), respectively.

4. The transition to small world is visible in the changing
“aspect ratio” of the portrait. These portraits have all
been padded to the same dimensions.

5. Scale-free networks with identical numbers of nodes
and power law exponents can still give radically
different portraits. Thus the portrait can be used
to infer a generating mechanism or scale-free
model, by providing information beyond the degree
distribution.

(a) (b)

(c) (d)

Fig. 5: (Color online) Scale-Free models. The average of 100
instances of the (undirected) Krapivsky-Redner (r= 1/2) [12];
Barabási-Albert (BA) (m= 2) [13]; and Molloy-Reed (MR)
(drawn from P (k)∼ k−3) [9] networks; as well as the (1,3)-
Flower at generation 6 [14]; (a)–(d), respectively. All have
N = 2732, γ ≈ 3, but 〈k〉 varies. Note that (d) has been
darkened slightly for clarity.

(a) (b)

(c) (d)

Fig. 6: (Color online) Regular 40× 40 lattices with defects.
(a) A periodic and (b) non-periodic lattice; (c) a lattice with
skew-periodic boundaries; and (d) a periodic lattice with a
random 5 percent of all nodes missing. Observe the strong
linear slope, indicating the underlying two-dimensional lattice,
as well as the narrowness of the distributions in (a), (c), and
(d), due to the regularity of the periodic lattice. Similarly, 1D
lattices show a constant (vertical) line and 3D lattices exhibit
quadratic growth.

6. Lattice defects, dimensionality (since shells scale like
the dimension −1), and “regularity” are all visible in
the portrait. This is useful, since the change in edges
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(a) (b)

(c)

(e) (f)

(d)

Fig. 7: (Color online) Several real-world networks. (a) The
western states power grid (unweighted) [1]; (b) US airlines
network [15]; and directed metabolic networks for H. influen-
zae, R. capsulatus, M. jannaschii, and C. elegans [3], (c)–(f),
respectively. The metabolic networks appear similar to one
another yet unlike the power grid and airlines networks.

(a) (b)

Fig. 8: (Color online) (a) The original metabolic network
of M. genitalium [3] with assortativity A=−0.174216 and
(b) with A= 0.000757 after permuting random edge pairs while
preserving the degree distribution. The fine-scale structure in
the uppermost shells of (a) is no longer present in (b).

between a periodic and non-periodic lattice is small,
though very specific, and this leads to massive change
in the corresponding portraits.

7. Real world networks can give remarkably different
portraits, but some classes of real-world networks can
look similar (shown here with four metabolic networks

in panels c–f). The four metabolic networks look quite
similar despite widely varying scales in both axes.
This suggests a simple scaling procedure; stretch one
or both axes until the portraits overlap.

8. Correlation effects may still be visible in the higher
rows of the portrait. Here is a highly disassortative
metabolic network, note the vertical structures in the
higher rows. Rewiring or perturbing this network to
raise the assortativity destroys these structures.

Comparing portraits. – The portraits are useful
for showing an intuitive picture of a network, but they
can also be used quantitatively. A simple “distance”
comparing networks G and G′ may be defined, using their
respective B-Matrices1. Motivated by the Kolmogorov-
Smirnov (KS) test [16], we introduce the following statistic
between corresponding pairs of rows B� and B

′
�:

K� =max
k

∣∣C�,k −C ′�,k∣∣ , (5)

where C is the matrix of cumulative distributions of B,

C�,k =


∑
k′�k
B�,k′


/∑

k′
B�,k′ . (6)

The greater impact of lower shells on network properties
(such as the average path length [17,18]) can be considered
by assigning weights α�, based on shell “mass,” for
instance:

α� =
∑
k

B�,k +
∑
k

B′�,k. (7)

Finally, we choose a scalar distance ∆, generated by

∆(G,G′)≡∆(B,B′) =
(∑
�

α�K�

)/∑
�

α�. (8)

See fig. 9 for some concrete examples.
We apply this distance metric to four networks, summa-

rized in fig. 9. Two Erdős-Rényi (ER) networks, with equal
N and p, and a Barabási-Albert (BA) vs. a Molloy-Reed
(MR) network built from the BA degree distribution. The
plot indicates the value of the test statistic, eq. (5), while
the table indicates the values of ∆, from eq. (8). The plot
shows that the two ER networks agree very well with each
other, while the BA and MR networks agree at first, but
differences appear in higher rows (since BA has correla-
tion effects missing in MR). The table values all agree with
expectations: the ER graphs are very close to each other,
the BA and MR graphs are farther apart from each other,
and both BA and MR are very far from the ER networks.

1We assume that the networks are of comparable size. Empir-
ically, the B-matrices may be scaled and normalized: {�, k, B} �→
{�/L, k/K,B/N}, where L and K are the largest shell number and
largest degree (of any order), respectively. When the number of rows
is small, one may first replace the B-matrix by a suitably smoothed
surface (applying a spline procedure), then proceed with scaling.

68004-p4



Portraits of complex networks

ER1 ER2 BA MR
ER1 0 0.012 0.654 0.620
ER2 0.012 0 0.654 0.619
BA 0.654 0.654 0 0.232
MR 0.620 0.619 0.232 0

Fig. 9: Top: row-wise statistic K�: two ER graphs with N = 10
4

and p= 0.002; and a BA (diameter 10) vs. an MR network
(P (k)∼ k−3, diameter 14), both with N = 5× 104. Both the
BA and MR networks have the same degree distribution, so the
first rows agree. Differences in, e.g., assortativity, soon become
evident. Bottom: table containing the values of ∆, given by
eq. (8), for the four networks. This table shows that the two
ER graphs are very close to each, while the MR and BA graphs
are somewhat far apart from each other and very far from the
ER graphs, as expected.

Mathematically, it remains an open question if ∆ is a
metric or semi-metric (pseudometric). It is obvious from
eqs. (5) and (7) that ∆(x, y)� 0 and ∆(x, y) =∆(y, x).
Furthermore, the numbers in fig. 9 satisfy the triangle
inequality, but does this hold generally? The final issue
at hand concerns indiscernibility, ∆(x, y) = 0 ⇐⇒ x= y.
Discernibility in ∆(B,B′) appears to hold, but there
exist two non-isomorphic graphs, the dodecahedral and
Desargues graphs, which have identical B’s, disproving
discernibility in ∆(G,G′), if only because their B-matrices
are indiscernible2.

Conclusions and future work. – To summarize,
B-matrices offer us an unambiguous way to visualize
and discriminate between various complex networks.
With little practice one can readily pick the patterns
that distinguish one case from another: for example,
the metabolic networks (fig. 7) have a distinctly similar
appearance, with a prominent “knot” near the center
of the portraits. Even small changes in structure induce
visible changes in the B-matrix (figs. 3c,d, and 6d); the
largest changes being induced by the removal or addition
of links of highest betweenness centrality [19].
We have also introduced a distance, associated with the
B-matrix, that quantifies the differences between complex
networks. The distance between networks belonging to the

2These graphs are both discussed in the final section.

same ensemble is small (figs. 3a,b, and 9), but it grows
larger for networks in different ensembles (fig. 9).
Several generalizations come to mind. Equation (1)

encompasses directed graphs and may be extended to
weighted graphs: shells are defined by a set of weights
W = {w1, w2, . . . , wd} and could be found by Dijkstra’s
algorithm [20]. One may also generalize B to edges by
defining the distance from a node vi to an edge (vj , vk)
as the mean of distances d(vi, vj) and d(vi, vk) (see
footnote 3). This “edges matrix” has half-integer rows with
row 1/2 encoding the degree distribution, B1/2,k =NP (k),
and so forth.
Among the most promising applications of B-matrices,

besides identification and comparisons, is the question of
the information content of complex graphs. The portraits
can be compressed by applying conventional algorithms.
The size of the compressed files could serve as a measure of
information content (the difference in entropy of stochastic
scale-free networks, vs. that of the highly ordered flower,
in fig. 5, is apparent even visually).
Another interesting problem would be to use the

“smoothness” of the matrices to create some quan-
titative measure of regularity, perhaps based on the
variances of each row. This could also provide a useful
measure of information content as well as symmetry
and perhaps other characteristics. In several instances,
we have discussed the “slope” of the matrix without
giving specifics. While it is easy to identify dimensionality
from the lattices of fig. 6, other networks are of higher
dimension with broader row distributions and it is more
difficult to pick out the slope visually. A specific fitting
procedure or other technique may be useful.
Given the degree probability distribution (the first

row of the B-matrix) there exist algorithms to construct
complex networks that satisfy that degree distribution [9].
Perhaps the most important open question is the inverse
of obtaining the B-matrices: Given a B-matrix, find a
procedure to construct random complex nets belonging
to the ensemble represented by it. This is related to
the question of satisability constructing a random net
that satises just the P1(k) degree distribution is already
non-trivial [21], and this complicates as higher-order Pj ’s
are added in. There exist already examples of procedures
for obtaining maximally random nets with more than
the P1(k) constraint, for example in [22] it is shown how
to satisfy both the degree distribution and arbitrary
degree-degree correlations.
Regarding the famous Graph Isomorphism problem,

consider the non-isomorphic dodecahedral and Desargues
graphs; both are cubic distance-regular with 20 nodes [23]
and both have identical B-matrices4, so B does not

3B�,k is now the number of nodes with k edges at distance �.
4Distance-regular graphs will have exactly one nonzero element

per row in B; in principle, this may be exploited to search for
undiscovered distance-regular graphs by rewiring edges along some
scheme to minimize the number of nonzero elements per row. This
would likely be cost-prohibitive in practice.
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uniquely encode a network. In practice, the probability
of two large, non-isomorphic graphs chosen from a large
ensemble having identical B-matrices appears to be
vanishingly small, since the slightest difference will prop-
agate throughout B. The dodecahedral and Desargues
graphs are very similar in appearance, and the specific
relationship between their edge sets that allows for
identical B’s is unlikely to arise at random. We propose
that B is a “very good” answer to graph isomorphism. It
is also worth noting that the Desargues and dodecahedral
graphs have different edge matrices: we conjecture that
graphs are uniquely identified with both matrices. The
true power of B as a measure of graph isomorphism
remains an open question and warrants further study.
Finally, it is worth noting that the construction of B

requires an O(N2) algorithm, which may preclude its use
for extremely large networks. However, this algorithm is
easily parallelized by spreading the starting nodes over
multiple machines.
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