Working with network data

Jim Bagrow
james.bagrow@uvm.edu
bagrow.com

Complex Networks
Winter Workshop
2021-01-05

The University of Vermont

About myself

Understanding networks from data

Community detection

Link communities reveal multiscale complexity in networks

Yong-Yeol Ahn ${ }^{1,2 *}$, James P. Bagrow ${ }^{1,2 *} \&$ Sune Lehmann ${ }^{3,4 *}$
Ahn et al. (2010)

A Local Method for Detecting Communities
James P. Bagrow ${ }^{1}$ and Erik M. Bollt ${ }^{2,}$
Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.
${ }^{2}$ Department of Math and Computer Science, Clarkson University, Potsdam, NY 13699-5815, USA.
Bagrow \& Bollt (2005)

PHYSICAL REVIEW E 85, 066118 (2012)
Communities and bottlenecks: Trees and treelike networks have high modularity James P. Bagrow*
Department of Engineering Sciences and Applied Mathematics, Northwestern Institute on Complex Systems, I Sciences and Applied Mathematics, Northwesterr In
Northwestern University, Evanston, Illinois 60208 USA Northwestern University, Evanston, Illinois 60208, USA
(Received 2 January 2012; published 15 June 2012)

Applied to data

Mesoscopic Structure and Social Aspects of Human Mobility
James P. Bagrow ${ }^{12 \pi}$, Yu-Ru Lin ${ }^{3,4}$
Bagrow \& Lin (2012)

A

Bagrow (2012)

Data + Models

Robustness and modular structure in networks

JAMES P. BAGROW

Mathematics \& Statistics, University of Vermont, Burlington, VT, USA
Center for Complex Network Research, Northeastern University, Boston, MA, USA
(e-mail: james.bagrow@uvm.edu)
SUNE LEHMANN
DTU Informatics, Technical University of Denmark, Kgs Lyngby, Denmark
College of Computer and Information Science and
(e-mail: sljo@dtu.dk)
YONG-YEOL AHN
School of Informatics \& Computing, Indiana University, Bloomington IN, USA
Center for Complex Network Research, Northeastern University, Boston, MA, USA (e-mail: yyahn@indiana.edu)

How does missing data change the appearance of detected communities?

Data + Models

The quoter model: A paradigmatic model of the social flow of written information

James P. Bagrow ${ }^{1, a)}$ and Lewis Mitchell ${ }^{2, b}$
${ }^{1}$ Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405, USA
${ }^{2}$ School of Mathematical Sciences, North Terrace Campus, The University of Adelaide, Adelaide, South Australia 5005, Australia
(Received 31 October 2017; accepted 23 February 2018; published online 11 July 2018)
(i) Alter: Hey, let's go to the beach tomorrow. Ego: It might rain, so let's go to the movies.
(ii)

Measuring the flow of information between individuals

```
nature
```

Information flow reveals prediction limits in online social activity

James P. Bagrow $\bigoplus^{®^{1,2 *}}$, XipeiLiu ${ }^{1,2}$ and Lewis Mitchell ${ }^{1,2,3 \star}$

```
Modern society depends on the flow of information over
online social networks, and users of popular platforms gener-
social ties"-5.S.However, it remains unclear what fundament
limits exist when usingthese data to predict the activities and
interests of individuals, and to what accuracy such prediction
can be made using an individual's social ties. Here, we sho
M postings to online socialplatforms present a unique opportunity to 
expore the texta, content ofmessages in conjunc,
I}\mathrm{ Information theory allows us to mathematically quantify the
form of online written communication. Although the mathemati-
cal definition of information is somewhat distinct from our com-
```


Rough Outline

- Basics

Slides available on
bagrow.com

- file formats, code, databases
- Networks from data
- common tasks and good practices
- Case studies and examples
- Machine learning for data and networks
- Visualization (time permitting)

Network data are simple

- Looks like a complicated object
- Lots of measures, metrics, and algorithms to quantify and understand it
- But from a data perspective, very little to implement

Network data are simple

Store graph topology \rightarrow need to define the nodes (vertices) and the links (edges):
$G=(V, E),|V|=N,|E|=M$

Edgelist:	Alice	Bob
$M \times 2$ matrix	Bob	Carol
	Bob	Dani
	\vdots	\vdots

Need identifiers for nodes and two delimiter symbols

Network data are simple

Store graph topology \rightarrow need to define the nodes (vertices) and the links (edges):
$G=(V, E),|V|=N,|E|=M$
Adjacency list: Alice Bob
(ragged)

Bob	Carol	Dani	
Carol	Bob	Erik	Fan
\vdots			

May be harder to process in some programming languages

Network data are simple

Store graph topology \rightarrow need to define the nodes (vertices) and the links (edges):
$G=(V, E),|V|=N,|E|=M$

Adjacency
Matrix:

0	1	0	\cdots
0	0	1	\cdots
0	1	0	\cdots
\vdots	\vdots	\vdots	\ddots

Network data are simple

Store graph topology \rightarrow need to define the nodes (vertices) and the links (edges):
$G=(V, E),|V|=N,|E|=M$

GraphML

Complex but more flexible

```
<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
    http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
    <graph id="G" edgedefault="undirected">
    <node id="n0"/>
    <node id="n1"/>
    <node id="n2"/>
    <node id="n3"/>
    <node id="n4"/>
    <node id="n5"/>
        <node id="n6"/>
        <node id="n7"/>
    <edge source="n0" target="n2"/>
    <edge source="n1" target="n2"/>
    <edge source="n2" target="n3"/>
    <edge source="n3" target="n5"/>
    <edge source="n3" target="n4"/>
    <edge source="n4" target="n6"/>
    <edge source="n6" target="n5"/>
    <edge source="n5" target="n7"/>
    </graph>
</graphml>
```


Data surrounding network

What about extra attributes?
$G=(V, E, X)$
$X=$ attributes, node labels or colors, timestamps

Can also have edge attributes

Edgelist

Alice	Bob	e1
Bob	Carol	e2
Bob	Dani	e3
\vdots	\vdots	
		\mid
	attributes	

Node attribute list

Data surrounding network

What about extra attributes?

$G=(V, E, X)$
$X=$ attributes, node labels or colors, timestamps

Can also have edge attributes

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d0" for="node" attr.name="color" attr.type="string"> <default>yellow</default>
</key>
<key id="d1" for="edge" attr.name="weight" attr.type="double"/> <graph id="G" edgedefault="undirected">
<node id="n0">
<data key="d0">green</data>
</node>
<node id="n1"/>
<node id="n2">
<data key="d0">blue</data>
</node>
<node id="n3">
<data key="d0">red</data>
</node>
<node id="n4"/>
<node id="n5">
<data key="d0">turquoise</data>
</node>
<edge id="e0" source="n0" target="n2"> <data key="d1">1.0</data>
</edge>
<edge id="e1" source="n0" target="n1"> <data key="d1">1.0</data>

Network data structures

To perform computations on a network, need a computable representation

neighbors

node2neighbors = ...
print(node2neighbors['Alice'])
\{'Bob','Carol'\}

Network libraries

It's a good exercise to build your own data structures or even library, but in practice: lots of existing libraries
https://networkx.github.io https://igraph.org
https://graph-tool.skewed.de

NetworkX	Software for complex networks
Stable (notes) 2.2 - September 2018 download \mid doc \mid pdf	NetworkX is a Python package for the creation, manipulation, and study of the structure, dy- namics, and functions of complex networks.
Latest (notes) 2.3 development github \mid doc \mid pdf	

graph-tool
What is graph-tool?
Graph-tool is an efficient Python module for manipulation and statistical analysi graphs (a.k.a. networks). Contrary to most other python modules with similar functionality, the core data structures and algorithms are implemented in $\mathrm{C}^{++}, \mathrm{n}$ extensive use of template metaprogramming, based heavily on the Boost Graph

Graphical Interfaces and dashboards

I prefer to handle networks
computationally, writing and running code-expressive, provenance

Interactive interfaces easier to get started but then you max out quickly!

Can be good for visualizations

Graph databases—Big Data

databases: relational key-value document graph :
https://neo4j.com https://jena.apache.org/ http://graphdb.ontotext.com https://graphal.org

Graph databases—Big Data

Applications of Graph DBs:
Knowledge graphs - semantic web
Fraud detection - real time
Recommendations (Netflix, Amazon)
Graph DBs best for real-time, highvolume, local operations

Graph databases-Big Data

Applications of Graph DBs:
Knowledge graphs - semantic web
Fraud detection - real time
Recommendations (Netflix, Amazon)
Graph DBs best for real-time, highvolume, local operations

Knowledge Graph

Triplestore/RDF:

<Leonardo da Vinci> <is a> <Mathematician> <Diabetes Genes> <encodes> <Leptin> <Visigoths> <conquered> <Ostrogoths> <Barack Obama> <born in> <Hawaii>
<Harry Potter> <is a> <Fictional Character> <Mount Everest> <elevation> <8,848 meters> <Magic> <is> <Real>

Graph databases-Big Data

Some Knowledge Graphs

Dataset	Triples	Size
Wikidata (2018-09-11)	7.2 B	28 GB
DBPedia 2016-04 English	1 B	13 GB
DBLP 2017	882 M	1 GB
Freebase	2 B	11 GB
YAGO2s Knowledge Base	159 M	903 MB
WordNet 3.1	5.5 M	23 MB

[^0]

Network data are not simple

There is an upstream task

Network data are simple

- Looks like a complicated object
- Lots of measures, metrics, and algorithms to quantify and understand it
- But from a data perspective, very little to implement

What defines your network?
Criteria for nodes?
Criteria for links?
(Is a network even a good idea?)

Only simple after addressing these questions (if you need to)

Example: social network from mobile phone data

OPen | Acccess frely avaiable onine |
| :--- |

Collective Response of Human Populations to LargeScale Emergencies
Plos one

James P. Bagrow ${ }^{1,2 * 9}$, Dashun Wang ${ }^{1,29}$, Albert-László Barabási ${ }^{1,2,3}$

Link communities reveal multiscale complexity in networks
Yong-Yeol Ahn ${ }^{1,2 *}$, James P. Bagrow ${ }^{1,2 *}$ \& Sune Lehmann ${ }^{3,4 *}$

Mesoscopic Structure and Social Aspects of Human
Mobility
James P. Bagrow ${ }^{1,2_{*}}, \mathrm{Yu}$-Ru Lin ${ }^{\mathbf{3 , 4}}$

Example: social network from mobile phone data

OPEN ${ }^{2}$ ACCESS Freely available online

PLoS one
Collective Response of Human Populations to LargeScale Emergencies
James P. Bagrow ${ }^{1,2 \star}$, Dashun Wang ${ }^{1,29}$, Albert-László Barabási ${ }^{1,2,3}$

Oefe 2 Access freelyaviluble online
oplos one
Mesoscopic Structure and Social Aspects of Human Mobility

$$
\text { James P. Bagrow }{ }^{122,} \text { Yu-Ru Lin }{ }^{3,4}
$$

spatial social network

Example: social network from mobile phone data

Extracted from deidentified Call Detail Record (CDR) files

Criteria for nodes?
人酸

What defines your network?

Criteria for links?

Example: brain networks

Example: brain networks

Example: brain networks

There is an upstream task

What's the best network (there may be more than one)?
"Diseaseome"
Define nodes
Define edges (hyper-edges?)
Directed?
Weighted?
Use a bipartite representation or project down?
disease phenome

The human disease network

(2007) Proc Natl Acad Sci USA 104:8685-8690

Goh et al. PNAS (2007)

Case study: gathering a bipartite network

Building this network from the data

GitHub provides an API that lets you access the activities (events) of users as they make changes to code, join different teams, etc.

Building this network from the data

GitHub provides an API that lets you access the activities (events) of users as they make changes to code, join different teams, etc.

Building this network from the data

GitHub provides an API that lets you access the activities (events) of users as they make changes to code, join different teams, etc.

JSON data

GitHub Developer

Docs - Blog

REST API v3

Overview
This describes the resources that make up the official GitHub REST API v3. If you have any problems or requests, please contact GitHub Support.

1. Current version

ii. Schema
iii. Authentication
iv. Parameters
v. Root endpoint
\{
"id": "8401895651",
"type": "PushEvent",
"actor": \{
"login": "bagrow",
"display_login": 'bagrow", "gravatar_id": "", "url": "https://api.github.com/users/bagrow",
\},
"repo": \{
"id": 904212,
"name": "bagrow/linkcomm",
"url": "https://api.github.com/repos/bagrow/linkcomm"
\},
"payload": \{
"action": "started"
\},
"public": true,
"created_at": "2018-10-11T03:33:42Z"

Building this network from the data

GitHub provides an API that lets you access the activities (events) of users as they make changes to code, join different teams, etc.

Building this network from the data

GitHub provides an API that lets you access the activities (events) of users as they make changes to code, join different teams, etc.

Building this network from the data

GitHub provides an API that lets you access the activities (events) of users as they make changes to code, join different teams, etc.

Building this network from the data

To build the entire network requires scraping their API:

- probably too slow
- API provider will probably block you

Solutions:

- Give up on getting the entire network and work locally; snowball sample?
- Find another source of data:

Building this network from the data

To build the entire network requires scraping their API:

- probably too slow
- API provider will probably block you

Solutions:

- Give up on getting the entire network and work locally; snowball sample?
- Find another source of data:

GitHub provides 20+ event types, which range from new commits and fork events, to opening new tickets, commenting, and adding members to a project. These events are aggregated into hourly archives, which you can access with any HTTP client:

Query

git GH Archive

Activity for 1/1/2015
Activity for all of January 2015

Command
wget http://data.gharchive.org/2015-01-01-15.json.gz
wget http://data.gharchive.org/2015-01-01-\{0..23\}.json.gz
wget http://data.gharchive.org/2015-01-\{01..31\}-\{0..23\}.json.gz

Common task: thinning

Common task: thinning

VS.

Common task: thinning (subsetting)

Sometimes necessary to remove spurious links and/or nodes

Remove singleton nodes?
Remove nodes with degree $<k$
\rightarrow k-cores

Common task: thinning (subsetting)

Sometimes necessary to remove spurious links and/or nodes

Remove singleton nodes?

Remove nodes with degree $<k$
\rightarrow k-cores

高 Temporal network?

- Keep nodes/links of a certain age
- Consider a certain time window
- But how to pick?

Common task: thinning (subsetting)

Sometimes necessary to remove spurious links and/or nodes

Remove singleton nodes?

Remove nodes with degree $<k$
\rightarrow k-cores

E Temporal network?

- Keep nodes/links of a certain age
- Consider a certain time window
- But how to pick? :

Choices depend on problem area, type of data, and your scientific goals

Common task: thinning

Network is very dense, lots of potentially spurious edges How to sparsify?

Common task: thinning

Network is very dense, lots of potentially spurious edges How to sparsify?

Threshold this matrix?

Edge (i, j) exists if $w_{i j}>$ cutoff

Common task: thinning

Network is very dense, lots of potentially spurious edges How to sparsify?

Threshold this matrix?

Edge (i, j) exists if $w_{i j}>$ cutoff

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a,1 }}$, Marián Boguñáa ${ }^{\text {b }}$, and Alessandro Vespignanic,d

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a,1 }}$, Marián Boguñáa ${ }^{\text {b }}$, and Alessandro Vespignanic,d

Normalize weights in the neighborhood of a node:

$$
p_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a, }}{ }^{1}$, Marián Boguñáab, and Alessandro Vespignanic,d

Normalize weights in the neighborhood of a node:

$$
p_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

Keep (i,j) with statistically significant values $p_{i j}$

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a, }}{ }^{1}$, Marián Boguñáab, and Alessandro Vespignanic,d

Normalize weights in the neighborhood of a node:

$$
p_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

Because $p_{i j}$ sum to 1, imagine dropping $k_{i}-1$ points uniformly at random onto $[0,1]$

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a, }}{ }^{1}$, Marián Boguñáab, and Alessandro Vespignanic,d

Normalize weights in the neighborhood of a node:

$$
p_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

Because $p_{i j}$ sum to 1, imagine dropping $k_{i}-1$ points uniformly at random onto $[0,1]$

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a, }}{ }^{1}$, Marián Boguñáab, and Alessandro Vespignanic,d

Normalize weights in the neighborhood of a node:

$$
p_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

What's the prob of getting a gap between points at least as big as the observed $p_{i j}$?

Common task: thinning

Idea: Use a local threshold

Extracting the multiscale backbone of complex weighted networks

M. Ángeles Serrano ${ }^{\text {a, }}{ }^{1}$, Marián Boguñáab, and Alessandro Vespignanic,d

Normalize weights in the neighborhood of a node:

$$
p_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

Keep edges where:

$$
1-\left(k_{i}-1\right) \int_{0}^{p_{i j}}(1-x)^{k_{i}-2} d x=\left(1-p_{i j}\right)^{k_{i}-1}<\alpha
$$

Common task: thinning

Easy to implement!

```
import networkx # http://networkx.github,io
def extract_backbone(G, weights, alpha):
    keep_graph = networkx.Graph()
    for i in G:
    neighbors = G[i]
    k = len(neighbors)
    if k > 1:
        W = sum( weights[i,j] for j in neighbors )
            for j in neighbors:
                            pij = 1.0*weights[i,j]/W
                                if (1-pij)**(k-1) < alpha: # edge significant
                                keep_graph.add_edge( i,j )
    return keep_graph
```


Common task: thinning

Robustness and modular structure in networks

JAMES P. BAGROW
Mathematics \& Statistics, University of Vermont, Burlington, VT, USA and
Center for Complex Network Research, Northeastern University, Boston, MA, USA (e-mail: james.bagrow@uvm.edu)

SUNE LEHMANN
DTU Informatics, Technical University of Denmark, Kgs Lyngby, Denmark and
College of Computer and Information Science, Northeastern University, Boston, MA, USA
(e-mail: sljo@dtu.dk)
YONG-YEOL AHN
School of Informatics \& Computing, Indiana University, Bloomington IN, USA and
Center for Complex Network Research, Northeastern University, Boston, MA, USA (e-mail: yyahn@indiana.edu)

Example where I used the method

Applied to fMRI data

Case study:
 Nodes are ambiguous

Inferring the size of the causal universe: features and fusion of causal attribution networks

Daniel Berenberg ${ }^{1,2}$ and James P. Bagrow ${ }^{3,2, *}$
${ }^{1}$ Department of Computer Science, University of Vermont, Burlington, VT, United States
${ }^{2}$ Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States
${ }^{3}$ Department of Mathematics \& Statistics, University of Vermont, Burlington, VT, United States
*Corresponding author. Email: james.bagrow@uvm.edu, Homepage: bagrow.com

December 14, 2018

Crowdsourced knowledge graphs

Knowledge graphs

$$
\begin{aligned}
& s_{i}=\text { "anxiety" } \\
& s_{j}=\text { "sleep loss" }
\end{aligned}
$$

ConceptNet

Knowledge graphs

Nodes are identified only by these text... Could be ambiguous, even within one network...

Knowledge graphs

IPRnet

$$
\begin{aligned}
& s_{i}=\text { "anxiety" } \\
& s_{j}=\text { "sleep loss" }
\end{aligned}
$$

Nodes are identified only by these text... Could be ambiguous, even within one network...

Knowledge graphs

IPRnet

$$
\begin{aligned}
& s_{i}=\text { "anxiety" } \\
& s_{j}=\text { "sleep loss" }
\end{aligned}
$$

Nodes are identified only by these text... Could be ambiguous, even within one network...

Can we combine these different networks together?

NetFUSES: Network FUsion with SEmantic Similarity

$$
\begin{aligned}
& s_{i}=\text { "anxiety" } \\
& s_{j}=\text { "sleep loss" }
\end{aligned}
$$

Threshold

$$
S\left(s_{i}, s_{j}\right) \geq t \quad i, j \in V_{1} \cup V_{2}
$$

edges of a fusion indicator graph:
Define a semantic similarity S between sentences:

Fuse nodes using connected components

NetFUSES: Network FUsion with SEmantic Similarity

$$
\begin{aligned}
& s_{i}=\text { "anxiety" } \\
& s_{j}=\text { "sleep loss" }
\end{aligned}
$$

Define a semantic similarity S between sentences:

$$
\begin{aligned}
& S\left(s_{i}, s_{j}\right) \leq 1 \\
& S\left(s_{i}, s_{i}\right)=1 \\
& S\left(s_{i}, s_{j}\right)=S\left(s_{j}, s_{i}\right)
\end{aligned}
$$

How to measure semantic similarity of text?

Fuse nodes using connected components

Machine Learning

(How to measure semantic similarity of text?)

Measuring semantic similarity with neural networks

Example: image classification
using training data: labeled images
\ldots, (AREG, 'lion'), ...

Measuring semantic similarity with neural networks

using training data: labeled images
.... (Aitan , 'lion'), ...

Measuring semantic similarity with neural networks

using training data: labeled images
What training data can we use for text?
..., (AREG, 'lion'), ...
"You shall know a word by the company it keeps."

Distributional Semantics
"You shall know a word by the company it keeps."

Distributional Semantics

-JR Firth
... worlds are yours except europa attempt no landings there ...

Turn large text corpus into collection of word-context pairs

Predict word from context

Training data

(Or predict context

Predict word from context
 Training data

context

(Or predict context

If this sounds like SVD, you're not crazy....

$$
\begin{aligned}
& M \sim \log \frac{P(w, c)}{P(w) P(c)} \\
& M=U \Sigma V^{\top} \\
& M \approx M_{d}=U_{d} \Sigma_{d} V_{d}^{\top}
\end{aligned}
$$

$$
W^{\mathrm{SVD}}=U_{d} \Sigma_{d}
$$

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com

Yoav Goldberg
Department of Computer Science
Bar-Ilan University
yoav.goldberg@gmail.com

Neural network implicitly performs weighted factorization of M

Embedding words in vector spaces has taken the world by storm

Google Scholar

Distributed representations of words and phrases e T Mikolov, I Sutskever, K Chen, GS Corrado... - Advances in neural The recently introduced continuous Skip-gram model is an efficient m quality distributed vector representations that capture a large number and semantic word relationships. In this paper we present several imp i. 25 Cited by 24838 Related articles All 32 versions Import
word vectors, sentence vectors, thought vectors...

Lots of natural language processing applications including semantic similarity:

$$
S\left(s_{i}, s_{j}\right)=\frac{\mathbf{v}_{i} \cdot \mathbf{v}_{j}}{\left\|\mathbf{v}_{i}\right\|\left\|\mathbf{v}_{j}\right\|}
$$

Embedding words in vector spaces has taken the world by storm

Google Scholar

Distributed representations of words and phrases e T Mikolov, I Sutskever, K Chen, GS Corrado... - Advances in neural The recently introduced continuous Skip-gram model is an efficient m quality distributed vector representations that capture a large number and semantic word relationships. In this paper we present several imf i. 25 Cited by 24838 Related articles All 32 versions Import
word vectors, sentence vectors, thought vectors...

Lots of natural language processing applications including semantic similarity:

$$
S\left(s_{i}, s_{j}\right)=\frac{\mathbf{v}_{i} \cdot \mathbf{v}_{j}}{\left\|\mathbf{v}_{i}\right\|\left\|\mathbf{v}_{j}\right\|}
$$

Must be approached with caution

Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan, ${ }^{1 *}$ Joanna J. Bryson, ${ }^{1,2 *}$ Arvind Narayanan ${ }^{1 *}$

"[...] word vectors contain stereotypes matching those documented with the [Implicit Association Test]"

Must be approached with caution

Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan, ${ }^{\text {1* }}$ Joanna J. Bryson, ${ }^{1,2 *}$ Arvind Narayanan ${ }^{1 *}$
"[...] word vectors contain stereotypes matching those documented with the [Implicit Association Test]"

ConceptNet at SemEval-2017 Task 2: Extending Word Embeddings with Multilingual Relational Knowledge

Robyn Speer Joanna Lowry-Duda

Neural language representations predict outcomes of scientific research

James P. Bagrow ${ }^{1,2, *}$, Daniel Berenberg ${ }^{3,2}$, and Joshua Bongard ${ }^{3,2}$
${ }^{1}$ Department of Mathematics \& Statistics, University of Vermont, Burlington, VT, United States Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States Department of Computer Science, University of Vermont, Burlington, VT, United States Corresponding author. Email: james.bagrow@uvm.edu, Homepage: bagrow.com

May 17, 2018

Machine Learning for Networks

DeepWalk: Online Learning of Social Representations

Bryan Perozzi Stony Brook University Department of Computer Science

Rami Al-Rfou Stony Brook University Department of Computer Science

Steven Skiena Stony Brook University Department of Computer Science

DeepWalk: Online Learning of Social Representations

Bryan Perozzi Stony Brook University Department of Computer Science

Rami Al-Rfou Stony Brook University Department of Computer Science

Steven Skiena Stony Brook University Department of Computer Science
word embedding (word2vec):

DeepWalk:

- Take a short random walk on the graph
- record the visited sequence of vertices
- treat vertices as words and do embedding!

DeepWalk: Online Learning of Social Representations

Rami Al-Rfou Stony Brook University Department of Computer Science

Steven Skiena Stony Brook University Department of Computer Science

DeepWalk:

(a) Input: Karate Graph

(b) Output: Representation

Is it also a matrix factorization problem? Yes!

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

Is it also a matrix
factorization problem? Yes!

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

Jiezhong Qiu $^{\dagger *}$, Yuxiao Dong ${ }^{\ddagger}$, Hao Ma ${ }^{\ddagger}$, Jian Li ${ }^{\#}$, Kuansan Wang ${ }^{\ddagger}$, and Jie Tang ${ }^{\dagger}$

Table 1: The matrices that are implicitly approximated and factorized by DeepWalk, LINE, PTE, and node2vec.

Algorithm	Matrix
DeepWalk	$\log \left(\operatorname{vol}(G)\left(\frac{1}{T} \sum_{r=1}^{T}\left(D^{-1} A\right)^{r}\right) D^{-1}\right)-\log b$
LINE	$\log \left(\operatorname{vol}(G) D^{-1} A D^{-1}\right)-\log b$
PTE	
node2vec	$\log \left(\frac{\frac{1}{2 T} \sum_{r=1}^{T}\left(\sum_{u} \boldsymbol{X}_{w, u} \underline{\boldsymbol{P}}_{c, w, u}^{r}+\sum_{u} \boldsymbol{X}_{c, u} \underline{\boldsymbol{P}}_{w, c, u}^{r}\right)}{\left(\sum_{u} \boldsymbol{X}_{w, u}\right)\left(\sum_{u} \boldsymbol{X}_{c, u}\right)}\right)-\log b$

[^1]- Many methods besides DeepWalk

Random walks are a fundamental concept when studying networks

Random walks and diffusion on networks

Naoki Masuda ${ }^{\text {a,* }}$, Mason A. Porter ${ }^{\text {b,c,d }}$, Renaud Lambiotte ${ }^{\text {c }}$
a Department of Engineering Mathematics, University of Bristol, Bristol, UK
${ }^{\mathrm{b}}$ Department of Mathematics, University of California Los Angeles, Los Angeles, USA
${ }^{\text {c }}$ Mathematical Institute, University of Oxford, Oxford, UK
${ }^{\text {d }}$ CABDyN Complexity Centre, University of Oxford, Oxford, UK

Random walks are a fundamental concept when studying networks

Random walks and diffusion on networks

Naoki Masuda ${ }^{\text {a,* }}$, Mason A. Porter ${ }^{\text {b,c,d }}$, Renaud Lambiotte ${ }^{\text {c }}$
a Department of Engineering Mathematics, University of Bristol, Bristol, UK
${ }^{\text {b }}$ Department of Mathematics, University of California Los Angeles, Los Angeles, USA
${ }^{\text {c }}$ Mathematical Institute, University of Oxford, Oxford, UK
${ }^{\text {d }}$ CABDyN Complexity Centre, University of Oxford, Oxford, UK

```
ARTICLE INFO
A B S TRACT
```

Random walks are a fundamental concept when studying networks

Maps of random walks on complex networks reveal community structure
Martin Rosvall*+ and Carl T. Bergstrom**

D

1110000110110110010101000101100110011000111101110
11100010111000111100111000011111011110001010011010
 011100001100010111010100011001110001100111100111
$\begin{aligned} & 101111101011111010101001010110110011101111011 \\ & 1011100010000111000101110\end{aligned} 10101001010111100010011$

Graph neural networks

Recall: Node attribute list

Alice	x11	x12
Bob	x21	x22
Carol	x31	x32
\vdots	\vdots	\vdots
	p features (attributes)	

Supervised learning

$$
y=f(X)
$$

$N \times p$ matrix of features or predictors each row is an observation, each column is a feature

Graph neural networks

Supervised learning

$$
y=f(X)
$$

Easy enough when observations are independent How to incorporate the network?

neural networks

Idea: propagate your data through the neural network

$$
H_{(0)}=X
$$

NN: $\quad H_{(\ell+1)}=\sigma\left(H_{(\ell)} W_{(\ell)}\right) \quad \sigma$-activation function

Graph neural networks

Idea: propagate your data through the neural network, but hit it with the graph at each layer

$$
H_{(0)}=X
$$

NN: $\quad H_{(\ell+1)}=\sigma\left(H_{(\ell)} W_{(\ell)}\right) \quad \sigma$-activation function

GNN: $\quad H_{(\ell+1)}=\sigma\left(\tilde{A} H_{(\ell)} W_{(\ell)}\right) \quad \tilde{A}$-preprocessed adiacency matrix

Graph neural networks

Idea: propagate your data through the neural network, but hit it with the graph at each layer

Applications

- classifying nodes
- predicting links
- comparing networks

$$
H_{(0)}=X
$$

$\mathrm{NN}: \quad H_{(\ell+1)}=\sigma\left(H_{(\ell)} W_{(\ell)}\right) \quad \sigma$-activation function
$\mathrm{GNN}: \quad H_{(\ell+1)}=\sigma\left(\tilde{A} H_{(\ell)} W_{(\ell)}\right) \quad \tilde{A}$-preerocessed adiacency matix

Designing visualizations

Visualization \subset Communication

Visualizations are one tool to tackle the larger problem of communicating your results

Designing visualizations

Which kind of door handle is better?

Designing visualizations

Which kind of door handle is better?

Better? Easier to open!

Designing visualizations

"Design is how it works"
-Steve Jobs

Designing visualizations

"Design is how it works" -Steve Jobs

The Design of Everyday Things

Donald A. Norman

Designing visualizations

Which kind of door handle is better?

Better? Easier to open!

Visualizations: better = easier to understand

Designing visualizations

-Know your message
-Know your medium
-Know your audience

- Account for strengths and weaknesses of human perception
-Keep it simple

Great info: series of articles published in Nature Methods during 2010-2015 called "Points of View"

POINTS OF VIEW

The challenge

Six months of work
\downarrow
~ 1000 plots
\downarrow
$5-10$ figures

The challenge

Know your message

A figure/visualization has a goal: what do you want the reader to learn?

Know your message

A figure/visualization has a goal: what do you want the reader to learn?

Summary sentence:

"Cancer deaths are down, but mostly due to decreased smoking rates."
"Algorithm B converges faster than A."
"Bats spread Ebola, not rodents."
"The rate of text messages increased after approximately day 45 ."
Build your figure(s) with this goal in mind.

Chart Suggestions-A Thought-Starter

Use your summary sentence to guide the kind of visualization(s) you use

http://extremepresentation.com
Zelazny, Say it with Charts, 2001

Know your medium

Print? Web? Slides?

Know your audience

Human perception

Parsing a figure or visualization requires performing visual tasks

Humans are better at some tasks and worse at others

	Aspect to compare
easiest	Positions on a common scale
	Positions on the same but nonaligned scales
	Lengths
	Angles, slopes
	Area
hardest	Volume, color saturation

Graphical Perception and Graphical
Methods for Analyzing Scientific Data
William S. Cleveland and Robert McGill

Human perception

Example: Comparing areas vs. lengths

Human perception

Example: Comparing areas vs. lengths

 Avoid Pie Charts!

Human perception

Perceptual biases plague even basic graphics

Human perception

Perceptual biases plague even basic graphics

Getting it right takes time

Iterate!

Readability is the most important goal!

Cancer Incidence by Type

Cancer Incidence by Type

Ver. 3

Color schemes
discrete palette

Good idea to lean on existing, evidence-based palettes (Tableau 10) and maps (Viridis)

Color blindness: the eye is a noisy channel

Red/Green blindness is most common \rightarrow avoid it

Figure 1 | Ishihara color-vision test plate. (a) Viewers with normal color vision should see the numeral ' 6 '. (b) Changing lightness of background improves contrast.

Don't rely completely on color - tweak hue/ saturation to improve contrast

Put it all together:

Keep it simple?

VINYL

Comparing Music Artists through Visualization
Search for an artist.

Radiohead \times	
Muse \times	
Up to 4 artists can be added to the comparison.	

More Options

Find a song on this chart
Just cluster similar songs (3)
Split View (3)
Show Album Cover
Avoid Overlapping
How to read this vis?

About the Data The data visualized here were pulled from Spotify API. Most data attributes are computed by Spotifi's audlo analys alvorith

Drag a song here for more details

Song Feature Distributions

Made by Toe Prasongpongchai, xi Chen Benjamin Du Preez McKenzie Murphy

Network Visualizations

Network visualizations

Before we begin, a tough question: is a network visualization appropriate?

Ghoniem et al. InfoVis'04 (2004)
Foucault Welles \& Meirelles (2015)
Foucault Welles \& Xu (2018)

Alternative approaches
Bagrow et al. EPL (2008)
Bagrow \& Bollt (2019)
Schulman et al. (2011)

Network visualizations

Before we begin, a tough question: is a network visualization appropriate?

Ghoniem et al. InfoVis'04 (2004) Foucault Welles \& Meirelles (2015) Foucault Welles \& Xu (2018)

Alternative approaches
Bagrow et al. EPL (2008) Bagrow \& Bollt (2019) Schulman et al. (2011)

Network visualizations

Before we begin, a tough question: is a network visualization appropriate?

Ghoniem et al. InfoVis'04 (2004)
Foucault Welles \& Meirelles (2015) Foucault Welles \& Xu (2018)

Alternative approaches
Bagrow et al. EPL (2008) Bagrow \& Bollt (2019) Schulman et al. (2011)

Network visualizations

Before we begin, a tough question: is a network visualization appropriate?

Ghoniem et al. InfoVis'04 (2004)
Foucault Welles \& Meirelles (2015) Foucault Welles \& Xu (2018)

Alternative approaches
Bagrow et al. EPL (2008) Bagrow \& Bollt (2019) Schulman et al. (2011)

Network visualizations

Before we begin, a tough question: is a network visualization appropriate?

Ghoniem et al. InfoVis'04 (2004)
Foucault Welles \& Meirelles (2015) Foucault Welles \& Xu (2018)

Alternative approaches
Bagrow et al. EPL (2008) Bagrow \& Bollt (2019) Schulman et al. (2011)

Observable Representation

Network visualizations

- Know your message
- Know your medium
- Know your audience
- Account for strengths and weaknesses of human perception
- Keep it simple

All these points still hold for visualizing networks

Aspects of a network visualization

1. Layout (node coordinates)
2. Node "mapper"
3. Link "mapper"

Aspects of a network visualization

0. Preprocessing

- Project if bipartite?
- Thin the network
- Retain only subgraph(s)
- Group nodes, network of communities?
- ...

1. Layout (node coordinates)
2. Node "mapper"
3. Link "mapper"

Aspects of a network visualization

0. Preprocessing

- Project if bipartite?
- Thin the network
- Retain only subgraph(s)
- Group nodes, network of communities?
- ...

1. Layout (node coordinates)
2. Node "mapper"
3. Link "mapper"

1. Layout (node2xy)

Place nodes in a visually meaningful way Minimize link length and crossing...

Graph drawing - many algorithms

Can be slow for dense/large networks... should large networks even be visualized?

1. Layout (node2xy)

Place nodes in a visually meaningful way Minimize link length and crossing...

Graph drawing - many algorithms

Can be slow for dense/large networks... should large networks even be visualized?

1. Layout (node2xy)

Tip: Algorithms are not perfect, fine-tune by hand!
(for static visualizations)

1. Layout (node2xy)

Tip: Algorithms are not perfect, fine-tune by hand!
(for static visualizations)

2. Node mapper (node2viz)

How to draw nodes?

2. Node mapper (node2viz)

How to draw nodes?

Tip: represent attributes by varying graphics

2. Node mapper (node2viz)

Tip: represent attributes by varying graphics

2. Node mapper (node2viz)

Cytoscape
Tip: represent attributes by varying graphics

3. Link mapper (link2viz)

How to draw links?
Shape(s) $\quad \downarrow \quad \downarrow$
Thickness(s) $\quad \mid \quad$ |

Color(s)

3. Link mapper (link2viz)

How to draw links?
Shape(s) $\quad \downarrow \quad \downarrow$
Thickness(s) $\quad \mid \quad$ |

Color(s)

Tip: edges don't need to be straight lines

Edge bundling

Flavor Network

Tip: edges don't need to be straight lines

Edge bundling

Flavor Network

Tip: edges don't need to be straight lines

Edge bundling

Cytoscape:

Layout Apps Tools Help
Bundle Edges
Clear All Edge Bends
Node Layout Tools
Settings...

Flavor network. Culinary ingredients (circles) and their chemieal relationship are illustrated. The color of each ingredient represents the food category that the ingredient belongs to, and the size of an ingredient is proportional to the usage frequency (collected from online recipe databasess:

Summary

- Basics
- file formats, code, databases
- Networks from data
- common tasks and good practices
- Case studies and examples
- Machine learning for data and networks
- Visualization (time permitting)

Challenges

- Hard to automate, generalize data analysis
- upstream tasks defining the network
- different fields have different needs
- Many tools, statistics, and algorithms - what to choose? standardize?
- Gap between models and data?
- Error analysis / Uncertainty quantification
- Big data:
- Gap between research and industry needs
- Graph databases - tech moving too quickly
- Visualizations (at scale)

Working with network data

Jim Bagrow
james.bagrow@uvm.edu bagrow.com

Complex Networks
Winter Workshop
2021-01-05

Working with network data

Jim Bagrow
james.bagrow@uvm.edu bagrow.com

Complex Networks
Winter Workshop
2021-01-05

[^0]: Courtesy: rdfhdt.org

[^1]: Notations in DeepWalk and LINE are introduced below. See detailed notations for PTE and

