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Understanding networks from data
LETTERS

Link communities reveal multiscale complexity in
networks
Yong-Yeol Ahn1,2*, James P. Bagrow1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems
of interacting objects, unifying the study of diverse phenomena
including biological organisms and human society1–3. One crucial
step when studying the structure and dynamics of networks is to
identify communities4,5: groups of related nodes that correspond
to functional subunits such as protein complexes6,7 or social
spheres8–10. Communities in networks often overlap9,10 such that
nodes simultaneously belong to several groups. Meanwhile, many
networks are known to possess hierarchical organization, where
communities are recursively grouped into a hierarchical struc-
ture11–13. However, the fact that many real networks have com-
munities with pervasive overlap, where each and every node
belongs to more than one group, has the consequence that a global
hierarchy of nodes cannot capture the relationships between over-
lapping groups. Here we reinvent communities as groups of links
rather than nodes and show that this unorthodox approach suc-
cessfully reconciles the antagonistic organizing principles of over-
lapping communities and hierarchy. In contrast to the existing
literature, which has entirely focused on grouping nodes, link
communities naturally incorporate overlap while revealing hier-
archical organization. We find relevant link communities in many
networks, including major biological networks such as protein–
protein interaction6,7,14 and metabolic networks11,15,16, and show
that a large social network10,17,18 contains hierarchically organized
community structures spanning inner-city to regional scales while
maintaining pervasive overlap. Our results imply that link com-
munities are fundamental building blocks that reveal overlap and
hierarchical organization in networks to be two aspects of the
same phenomenon.

Although no common definition has been agreed upon, it is widely
accepted that a community should have more internal than external
connections19–24. Counterintuitively, highly overlapping communities
can have many more external than internal connections (Fig. 1a, b).
Because pervasive overlap breaks even this fundamental assumption, a
new approach is needed.

The discovery of hierarchy and community organization has always
been considered a problem of determining the correct membership
(or memberships) of each node. Notice that, whereas nodes belong to
multiple groups (individuals have families, co-workers and friends;
Fig. 1c), links often exist for one dominant reason (two people are in
the same family, work together or have common interests). Instead of
assuming that a community is a set of nodes with many links between
them, we consider a community to be a set of closely interrelated links.

Placing each link in a single context allows us to reveal hierarchical
and overlapping relationships simultaneously. We use hierarchical
clustering with a similarity between links to build a dendrogram
where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-
drogram, links occupy unique positions whereas nodes naturally
occupy multiple positions, owing to their links. We extract link com-
munities at multiple levels by cutting this dendrogram at various
thresholds. Each node inherits all memberships of its links and can
thus belong to multiple, overlapping communities. Even though we
assign only a single membership per link, link communities can also
capture multiple relationships between nodes, because multiple
nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, but to
obtain the most relevant communities it is necessary to determine the
best level at which to cut the tree. For this purpose, we introduce a
natural objective function, the partition density, D, based on link
density inside communities; unlike modularity20, D does not suffer
from a resolution limit25 (Methods). Computing D at each level of the
link dendrogram allows us to pick the best level to cut (although
meaningful structure exists above and below that threshold). It is
also possible to optimize D directly. We can now formulate overlap-
ping community discovery as a well-posed optimization problem,
accounting for overlap at every node without penalizing that nodes
participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around
the word ‘Newton’ in a network of commonly associated English
words. (See Supplementary Information, section 6, for details on
networks used throughout the text.) The ‘clever, wit’ community is
correctly identified inside the ‘smart/intellect’ community. The
words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,
‘weight’ and ‘apple’ communities, illustrating that link communities
capture multiple relationships between nodes. See Supplementary
Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,
real-world evidence that a link-based approach is superior to exist-
ing, node-based approaches. Using data-driven performance mea-
sures, we analyse link communities found at the maximum partition
density in real-world networks, compared with node communities
found by three widely used and successful methods: clique percola-
tion9, greedy modularity optimization26 and Infomap21. Clique per-
colation is the most prominent overlapping community algorithm,
greedy modularity optimization is the most popular modularity-
based20 technique and Infomap is often considered the most accurate
method available27.

We compiled a test group of 11 networks covering many domains
of active research and representing the wide body of available data
(Supplementary Table 2). These networks vary from small to large,
from sparse to dense, and from those with modular structure to those
with highly overlapping structure. We highlight a few data sets of
particular scientific importance: The mobile phone network is the
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Communities and bottlenecks: Trees and treelike networks have high modularity
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Much effort has gone into understanding the modular nature of complex networks. Communities, also known as
clusters or modules, are typically considered to be densely interconnected groups of nodes that are only sparsely
connected to other groups in the network. Discovering high quality communities is a difficult and important
problem in a number of areas. The most popular approach is the objective function known as modularity, used
both to discover communities and to measure their strength. To understand the modular structure of networks it is
then crucial to know how such functions evaluate different topologies, what features they account for, and what
implicit assumptions they may make. We show that trees and treelike networks can have unexpectedly and often
arbitrarily high values of modularity. This is surprising since trees are maximally sparse connected graphs and
are not typically considered to possess modular structure, yet the nonlocal null model used by modularity assigns
low probabilities, and thus high significance, to the densities of these sparse tree communities. We further study
the practical performance of popular methods on model trees and on a genealogical data set and find that the
discovered communities also have very high modularity, often approaching its maximum value. Statistical tests
reveal the communities in trees to be significant, in contrast with known results for partitions of sparse, random
graphs.

DOI: 10.1103/PhysRevE.85.066118 PACS number(s): 89.75.Hc, 89.75.Fb, 05.10.−a, 89.20.Hh

I. INTRODUCTION

Complex networks have made an enormous impact on
research in a number of disciplines [1–5]. Networks have
revolutionized the study of social dynamics and human
contact patterns [6–8], metabolic and protein interaction in
a cell [9,10], ecological food webs [11–13], and technological
systems such as the World Wide Web [14,15] and airline
transportation networks [16,17]. Seminal results include the
small-world [18] and scale-free nature [14] of many real-world
systems.

One of the most important areas of network research has
been the study of community structure [19,20]. Communities,
sometimes called modules, clusters, or groups, are typically
considered to be subsets of nodes that are densely connected
among themselves while being sparsely connected to the rest
of the network. Networks containing such groups are said
to possess modular structure. Understanding this structure is
crucial for a number of applications from link prediction [21]
and the flow of information [22] to a better understanding of
population geography [23–25].

Much effort has been focused on finding the best possible
partitioning of a network into communities. Typically, this is
done by optimizing an objective function that measures the
community structure of a given partition. Many algorithmic
approaches have been devised. Most partition the entire
network, while some focus on local discovery of individual
groups [26–28]. Overlapping community methods, where
nodes may belong to more than one group, have recently
attracted much interest [29–31]. For a lengthy review of
community methods see [19].

Given the reliance on objective functions, it is important
to understand how the intuitive notion of communities as

*james.bagrow@northwestern.edu; http://bagrow.com

internally dense, externally sparse groups is encoded in the
objective function. Some functions simply measure the density
of links within each community, ignoring the topological
features those links may display, while other functions rely
upon those links forming many loops or triangles, for example.
We show the importance of understanding these distinctions
by revealing some surprising features of how communities are
evaluated. In particular we show that the only requirement for
strong communities, according to the most popular community
measure, is a lack of external connections, that bottlenecks [32]
leading to isolated groups can make strong communities even
when those groups are internally maximally sparse. This
contradicts the notion of communities as being unusually
densely interconnected groups of nodes.

This paper is organized as follows. In Sec. II we present
several measures of community quality and discuss their
different features and purposes. In Sec. III we show analyt-
ically that trees and treelike graphs can possess partitions
that display very high, often arbitrarily high, values of
modularity. This is our primary result. In Sec. IV we apply two
successful community discovery algorithms to these trees and
show that the discovered communities can have even higher
modularities. We also study the community structure of a
treelike network derived from genealogical data. In Sec. V we
perform statistical tests on the various communities and find
that most of the partitions we consider for trees are statistically
significant. We finish with a discussion and conclusions in
Sec. VI.

II. MEASURING COMMUNITIES

Given a network, represented by a graph G of N nodes
and M links whose structure is encoded in an N × N
adjacency matrix A, where Aij = 1 if nodes i and j are
connected and zero otherwise, we wish to determine to what
extent G possesses modular structure. To put the notion of

066118-11539-3755/2012/85(6)/066118(9) ©2012 American Physical Society
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A Local Method for Detecting Communities

James P. Bagrow1 and Erik M. Bollt2,1
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Abstract

We propose a novel method of community detection that is computationally inexpensive and pos-

sesses physical significance to a member of a social network. This method is unlike many divisive and
agglomerative techniques and is local in the sense that a community can be detected within a network
without requiring knowledge of the entire network. A global application of this method is also introduced.

Several artificial and real-world networks, including the famous Zachary Karate club, are analyzed.

1 Introduction

It has been shown in the past that many interesting systems can be represented as networks composed of
vertices and edges [1, 2, 3, 4]. Such systems include the Internet [5], social and friendship networks [6], food
webs [7], and citation networks [8, 9]. For example, a social network may represent people as vertices and
edges linking vertices when those people are on a first-name basis.

A topic of current interest in the area of networks has been the idea of communities and their detection. A
Community could be loosely described as a collection of vertices within a graph that are densely connected
amongst themselves while being loosely connected to the rest of the graph [10, 11, 12]. Many networks
exhibit such a community structure and this motivates our work. This description, however, is somewhat
vague and open to interpretation. This leads to the possibility that different techniques for detecting these
communities may lead to slightly different yet equally valid results. We emphasize this variation in Section
2.4.

Several techniques have been proposed to detect community structure inside of a network. The recent
and highly successful betweenness centrality algorithm due to Newman and Girvan [13, 14, 15] performs
well within a variety of networks but it is costly to compute (O(n2m) on a graph with n vertices and m
edges) [15]. More importantly, while betweenness centrality has been shown to be a useful quantity for
detecting community structure, it is knowledge not usually attainable to a vertex within the graph.

In this paper we ask, if a person were to move to a new town, what actions would he or she take to
see what community or communities they belong to? Most community detection methods using hierarchical
clustering fall within two categories: divisive and agglomerative [6, 15]. Both forms, including those using
betweenness and other methods, are global algorithms and don’t represent feasible actions that a member of
a network could undertake to identify the network’s community structure. The method proposed here may
better represent actions that members of a network would undertake to identify their own communities.

2 The Algorithm

The proposed algorithm consists of an l-shell spreading outward from a starting vertex. As the starting
vertex’s nearest neighbors and next nearest neighbors, etc. are visited by the l-shell, two quantities are
computed: the emerging degree and total emerging degree. The emerging degree of a vertex is defined as the
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Mesoscopic Structure and Social Aspects of Human
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Abstract

The individual movements of large numbers of people are important in many contexts, from urban planning to disease
spreading. Datasets that capture human mobility are now available and many interesting features have been discovered,
including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows
of mobility – the sets and sequences of visited locations – have not been well studied. We show that individual mobility is
dominated by small groups of frequently visited, dynamically close locations, forming primary ‘‘habitats’’ capturing typical
daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical
contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is
universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by
current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel.
Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may
influence processes such as information spreading and revealing new connections between human mobility and social
networks.
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Introduction

Understanding human movement is essential for a range of
society-wide technological problems and policy issues, from urban
planning [1] and traffic forecasting [2], to the modeling and
simulation of epidemics [3,4,5]. Recent studies on mobility
patterns have shown that spatiotemporal traces are highly non-
random [6,7,8], exhibiting distinct dynamics subject to geographic
constraints [9,10,11,12,13,14]. Analytical models have been
developed to reflect individual mobility dynamics such as the
tendency to move back and forth between fixed locations on a
regular basis [15]. When examining populations, movement
patterns may be highly correlated with dynamics such as contact
preference [9,11], yet this has not been well studied at the
individual level. Previous work on human mobility has focused
primarily on simple measures that forego the majority of the
detailed information available in existing data. There is good
reason for this, as basic approaches tend to be most fruitful for new
problems. Yet these measures reduce an entire mobility pattern to
a single scalar quantity, potentially missing important details and
throwing away crucial information.

A number of approaches are available for studying the
geographic substructure of individual mobility. One route is to
perform spatial clustering [16] on the specific locations an

individual visits, potentially revealing important, related groups
of locations. However, such analysis is purely spatial, neglecting
the detailed spatiotemporal trajectories available for each person,
reducing their mobility to a collection of geographic points and
ignoring any information regarding the flows, or frequencies of
movement, between particular locations. At the same time, the
raw spatial distance separating two locations may not be
meaningful: a short walk and a short car trip typically cover very
different distances in the same amount of time, and the cognitive
and economic costs associated with air travel depend only mildly
(if at all) upon distance [17]. Modeling frameworks such as the
Theory of Intervening Opportunities [18] and the recently
introduced Radiation model [19] further argue that raw distances
are not necessarily the most effective determinant for travel. In this
work we show the importance of incorporating how frequently an
individual travels between two locations, which naturally accounts
for spatial and dynamic effects while revealing the underlying
spatiotemporal features of human mobility.

Results

Beginning from a country-wide mobile phone dataset
[20,7,21,8,15,22,23,24], we extract 34 weeks of call activity for a
sample population of approximately 90 thousand phone users.

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37676

Each call activity time series encodes the spatiotemporal trajectory
of that user. (See Materials and Methods and File S1 for details
about the data.) For each user we construct a directed, weighted
mobility network capturing the detailed flows between individual
locations (represented using cellular towers). Examples of both
mobility networks and spatiotemporal mobility flows are shown in
Figs. 1A and B, respectively. The recurrent and repetitive nature
of human motion is clearly visible in Fig. 0B, where we explode
the user trajectories vertically in time. We apply to each user’s
mobility network an information-theoretic graph partitioning
method known as Infomap [25], which uses the flows of random
walkers to find groups of dynamically related nodes in directed,
weighted networks. We do not use spatial or distance information
in partitioning, instead Infomap mirrors the stochastic process
underlying human mobility flows; see File S1 Sec. S3 for details.
(Infomap’s underlying mechanism is further justified in this
context by the results of [22].) The groups of locations that we
discover, which we refer to as mobility ‘‘habitats,’’ will be shown to
be crucial to both the spatiotemporal dynamics of human motion,
and to the interplay between mobility and human interaction
patterns. We rank habitats in decreasing order of phone activity,
such that a user’s most frequently visited habitat is Habitat 1 or the
primary habitat. We observe that human mobility is almost
universally dominated by the primary habitat, where the majority
of user call activity occurs–and thus it incorporates both home and
work, home and school, or other major social contexts–along with
a number of less active subsidiary habitats (see Fig. 1C, File S1 Fig.
B, Sec. S3.2). We further see in Fig. 1D that most users possess 5–
20 habitats, while only approximately 7% of users have a single
habitat. Note that these habitats, unique for each member of the
population, differ greatly from existing work on partitioning
mobility or social connectivity [26,13,27], which instead focus

entirely on partitioning a single geographic network aggregated
from large populations.

Spatial characteristics
The spatial extent of a user’s total mobility pattern has been

shown to be well summarized by a single scalar quantity, the
radius of gyration, or gyradius, R2

g~vDri{rCMD2wi, where ri is
the spatial position of phone call i and rCM is the user’s center of
mass [7]. In addition to using the global gyradius we also compute
the reduced radius of gyration rg(h) for each habitat h, considering
only those locations and calls contained within that habitat. In
Fig. 2A we plot the population distributions of the first three
habitat’s rg, compared with the total gyradius Rg considering all
calls placed from all visited locations. This shows that the spatial
extent of habitats tends to be far smaller than the total mobility,
often by an order of magnitude, and that most users have a habitat
rg between 1–10 km. See also File S1 Fig. D. In Fig. 2B we study
the functional dependence of the primary habitat’s gyradius,
rg(h1), versus Rg. We uncover an intriguing power law scaling
relation characterized by two regimes, where rg(h1)*Ra

g with
a~1 for RgvR!&5 km, and a~1=3 for RgwR!. The linear
relationship below this critical radius R! indicates that those users
(roughly 8% of the population) are mostly characterized by a single
habitat. (In fact, only 54.8% of users with Rgv5 km have one
habitat, but that 97.6% of their calls on average occur within their
primary habitat.) But once a user’s range extends beyond this
critical 5 km cutoff (true for 92% of the population) a new regime
emerges where multiple habitats exist and tend to be far smaller
and more spatially cohesive than the total mobility (since av1).
(For users with Rgw5 km, only 2.9% have one habitat and the
primary habitat accounts for 78.7% of activity on average.)
Finally, in Fig. 2C we show the geographic distance d(h1,h2)

Figure 1. Habitats reveal the spatiotemporal substructure of human mobility patterns. (A) Spatial trajectories of two users, one traveling
to a large number of locations and another covering a smaller range. Node size indicates the amount of time spent at a particular location (as
quantified by mobile phone activity), node color represents the location’s habitat detected using Infomap (see Methods), and line width
approximates the number of trips between locations. Habitats are ordered by call volume such that Habitat 1 contains the most calls. (B) Exploding
the spatial trajectories from A in time (vertical axis), the recurrent nature of human mobility becomes evident, with a number of trips featuring both
consistent destinations and consistently repetitive occurrence (zoom). These features are the root cause of the high predictability that human motion
is known to possess. (C) The daily call dynamics of the three most active habitats, as well as the overall dynamics (summed over all habitats). The
primary habitat contains the majority of temporal activity. We see that User 1 tends to occupy his or her second and third habitats primarily at night,
while User 2 is more evenly distributed. (D) The distribution of the number of habitats per user. The median number of habitats is 11. Due to their
typical heterogeneity, we characterize population distributions using percentiles, proportional to the cumulative distribution.
doi:10.1371/journal.pone.0037676.g001

Structure and Social Aspects of Human Mobility
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Abstract

Complex networks have recently attracted much interest due to their prevalence in nature
and our daily lives (Vespignani, 2009; Newman, 2010). A critical property of a network
is its resilience to random breakdown and failure (Albert et al., 2000; Cohen et al., 2000;
Callaway et al., 2000; Cohen et al., 2001), typically studied as a percolation problem (Stauffer
& Aharony, 1994; Achlioptas et al., 2009; Chen & D’Souza, 2011) or by modeling cascading
failures (Motter, 2004; Buldyrev et al., 2010; Brummitt, et al. 2012). Many complex systems,
from power grids and the Internet to the brain and society (Colizza et al., 2007; Vespignani,
2011; Balcan & Vespignani, 2011), can be modeled using modular networks comprised of
small, densely connected groups of nodes (Girvan & Newman, 2002). These modules often
overlap, with network elements belonging to multiple modules (Palla et al. 2005; Ahn et al.
2010). Yet existing work on robustness has not considered the role of overlapping, modular
structure. Here we study the robustness of these systems to the failure of elements. We
show analytically and empirically that it is possible for the modules themselves to become
uncoupled or non-overlapping well before the network disintegrates. If overlapping modular
organization plays a role in overall functionality, networks may be far more vulnerable than
predicted by conventional percolation theory.

Keywords: modular networks, percolation, network resilience, community structure, overlapping
communities

1 Introduction

Consider a system of interacting elements representing computers, power generators,

neurons, office workers, etc. Typically these elements fulfill individual roles in the

network such as regulating power or propagating neuronal signals. Yet in many

systems, global functionality may require elements to also perform collective tasks

Bagrow et al. (2015)
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Fig. 1. Modeling failures in modular networks. We analyze two networks, one representing
the linkages between network elements (a) and a second detailing the overlapping connectivity
between the modules themselves (b). In this example, the failure of element 3 leads to the
loss of module B, since B no longer has sufficient members to complete its collective task.
This causes the module network to become disconnected (bottom) even though the element
network remains connected. (color online)

how it may apply to the practical issue of missing data during the detection of

overlapping and non-overlapping communities in real-world network datasets.

2 Modeling modular networks

Networks with overlapping modular structure can be well modeled with a bipartite

graph, also known as an affiliation network (Wasserman & Faust, 1994). This

network consists of two types of nodes representing the elements and the modules

and undirected links representing which elements belong to which modules. Links

in the bipartite graph only connect element nodes to module nodes. The network

is characterized by two degree distributions, rm and sn, governing the fraction

of elements that belong to m modules and the fraction of modules that contain

n elements, respectively (Newman et al., 2002; Newman et al., 2001; Newman,

2003; Newman & Park, 2003). Links are placed randomly between element and

module nodes respecting these degree distributions (Newman & Park, 2003). The

average number of modules per element is
∑

m mrm ≡ µ and the average number

of elements per module is
∑

n nsn ≡ ν. Using this as a starting point for our

model, we derive two networks from the bipartite graph by projecting onto either

the elements or the modules: One is the network between elements, studied by

Newman (2003) and Newman & Park (2003), while the other is a network where

each node represents a module and two modules are linked if they share at least

one element. The Largest Connected Component (LCC) (also known as the giant

component (Stauffer & Aharony, 1994)) in the element network disappears when, due

to missing elements, the network loses global connectivity; in the module network

it vanishes if the modules become uncoupled (non-overlapping). Before projection

elements fail independently with probability 1−p and are removed from the network.

Meanwhile, a module is unable to complete its collective task if fewer than a critical

fraction fc of its original elements remain. These failed modules are removed from

the module network but any surviving member elements are not removed from the

How does missing data change the 
appearance of detected communities?
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The quoter model: A paradigmatic model of the social flow of written
information
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We propose a model for the social flow of information in the form of text data, which simulates the
posting and sharing of short social media posts. Nodes in a graph representing a social network take
turns generating words, leading to a symbolic time series associated with each node. Information
propagates over the graph via a quoting mechanism, where nodes randomly copy short segments of
text from each other. We characterize information flows from these text via information-theoretic
estimators, and we derive analytic relationships between model parameters and the values of these
estimators. We explore and validate the model with simulations on small network motifs and larger
random graphs. Tractable models such as ours that generate symbolic data while controlling the
information flow allow us to test and compare measures of information flow applicable to real social
media data. In particular, by choosing different network structures, we can develop test scenarios to
determine whether or not measures of information flow can distinguish between true and spurious
interactions, and how topological network properties relate to information flow. Published by AIP
Publishing. https://doi.org/10.1063/1.5011403

Rich datasets on human activity and behavior are now
available, thanks to the widespread adoption of online
platforms such as social media. The primary artifact gen-
erated by users of these platforms is text in the form of
written communication. These symbolic data are invalu-
able for research on information flow between individuals
and across large-scale social networks, but working with
and modeling natural language data is challenging. While
most models of social information flow focus on compart-
ment models, contagion models, or cascades, the richness
of the text data available to researchers underscores the
importance of incorporating the full information present
in text into modeling efforts. In this paper, we propose
a model for how groups of individuals embedded in a
social network can generate streams of text data based
on their own interests and the interests of their neigh-
bors in the network. The goal is to more explicitly capture
the dynamics inherent to human discourse. We show how
to relate parameters in the model to quantities underly-
ing information-theoretic estimators specifically aimed at
understanding information flow between sources of text.
By controlling the graph topology and model parame-
ters, we can benchmark how information flow measures
applied to text deal with spurious interactions and con-
founds.

Recently, considerable effort has taken place to better
understand information flow in dynamical systems and real
datasets.1 On one hand, new measures and algorithms have
been developed to better understand information flow inter-
actions and related phenomena, including transfer entropy,2

symbolic transfer entropy,3 convergent cross-mapping,4 and
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causation entropy.5,6 On the other hand, new large-scale
datasets have allowed researchers to better understand at
scale the spread of information in a complex system, espe-
cially those involving online social networks and social media
such as Twitter.7,8 Especially interesting are studies applying
information-theoretic tools to large-scale social media data,
such as Ver Steeg and Galstyan, who consider the shared
information present in the timings of tweets posted by social
ties on Twitter,9 and Borge-Holthoefer et al., who use sym-
bolic transfer entropy to investigate predictive signals of
collective action such as protests in the time series of the
numbers of tweets posted in different geographic regions.10

These recent studies show that tools developed from infor-
mation theory and dynamical systems theory can successfully
be applied to human dynamics data captured from online
platforms such as Twitter.

Most research on information flow within online media
either considers proxies of information flow, such as track-
ing the spread of particular keywords, or uses information-
theoretic tools focused on the timing of social media posts.9,10

Yet the posts themselves are packed with potentially useful
data: the text generated by users of online platforms is their
primary artifact and, when available for study, should be the
focus of research. Fortunately for the study of information
flow, information theory has a rich history of working with
symbolic data such as text.

Given the importance of focusing on the text data, there is
currently a lack of models for the problem of studying infor-
mation flow as measured from the text generated by users
in a social network. Most work focuses on modeling infor-
mation flow as a type of contagion, cascade, or diffusion
process.7,11–13 These works are invaluable for studying infor-
mation flow but by compartmentalizing nodes into groups that
have or have not adopted an innovation, been “infected,” etc.
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information in the texts of the individuals, whereas other mea-
surement methods limit themselves to proxies of information
flow, such as tracking the spread of keywords like hashtags or
URLs.

The focus of that work was on measuring information
flow from text data. When developing and applying estima-
tors in such scenarios, it is useful to have plausible models
with which to build examples and test cases. However, most
work modeling information flow has focused on the study
of information as “packets” spreading between individuals,
typically represented in Twitter’s case by the hashtags or
URLs. This allows researchers to apply contagion models,
such as Susceptible-Infected or other compartmental models,
complex contagion models, and more.11,22–24 Contagion mod-
els are very well studied on network topologies, but in this
case they neglect the dynamical processes governing written
communication. The back-and-forth nature of discussions, for
example, may generate far more information flow within the
text than would be measurable from the spread of keywords
alone.

II. THE QUOTER MODEL

We propose the “quoter model” as a simplified way to
capture the dynamics governing the written conversations tak-
ing place between individuals in a social network. The model
consists of N individuals embedded as the nodes V of a social
network G = (V , E) where |V| = N and there are |E | = M
edges connecting those nodes. For generality we take the
graph to be directed such that an edge (i, j) ∈ E represents
communication from node j to node i via the quoting process
described below.

Each member of the graph generates written text over
time, represented as a symbolic time series or “word stream.”
At timestep t, individual i generates a number of new words
according to one of the two mechanisms, growing his or
her word stream. The number of new words at timestep t is
λi(t) ∼ Li(t), where this number is drawn from an integer-
valued length distribution Li(t). This probability distribution
may be time-independent or evolve as a function of time, and
this distribution may vary across users (Li #= Lj, j #= i) or not
(Li = Lj ≡ L). After choosing the number of words to gener-
ate, the actual words are generated according to one of the two
mechanisms:

1. λi(t) draws with replacement from a vocabulary distribu-
tion Wi (with probability 1 − qij).

2. A contiguous sequence of λi(t) words are copied from a
random position within the previously written text of a
neighbor j of node i (with probability qij).

This process is then repeated for all individuals in the net-
work until their text streams have reached a desired length or
a desired number of timesteps have elapsed. The first mecha-
nism is intended to represent the creation of new content while
the second mechanism is the quoter action of the model. The
quote probabilities qij tune the relative strengths of the two
mechanisms by how often i quotes from the past text of j. We
illustrate one step of the model for a pair of individuals in
Fig. 1.

FIG. 1. The quoter model for the social flow of information. (i) The repeated
occurrences of short quoted passages such as this one throughout a written
conversation indicate information flow. (ii) In the model, words are generated
by individuals at each time step, forming word streams. To model information
flow we use two mechanisms: at each timestep, with probability 1 − q the
ego draws λ new words randomly from a specified vocabulary distribution
W ; otherwise, with probability q the ego copies a passage of length λ taken
from a random position in the past words of the alter.

The idea underlying the second mechanism is that when
two individuals are discussing a topic verbally or in writing,
and they are listening to one another, then there will be a back
and forth of small sequences of common words. The quotes
generated by the second mechanism are not meant to capture
full-length, long form quotations such as retweets, but instead
short shared sequences of text. Alice: “That’s the right way
to go”; Bob: “No, this is the right way.” In this example, the
exchange between Alice and Bob leads to a short quotation of
Alice by Bob (“the right way”) and from this exchange only
we can at least surmise that Bob is probably receiving and
reacting to Alice’s text. Of course, Bob could have responded
in an equivalent way without that short quote. However, over
the course of very long conversations we expect more such
quotations to occur on average, and they will likely occur
more often in conversations when there is more information
flow than in conversations where there is little information
flow.

A. Model components

The main components of the quoter model are (i) the
graph topology, which may be as simple as a single directed
link between two individuals, (ii) the quote probabilities qij,
(iii) the length distributions Li, and (iv) the vocabulary distri-
butions Wi. We study several graph topologies in this work.
The quote probabilities qij can be considered as edge weights
on the social network, and there is considerable flexibility in
assigning those weights.

The length distributions Li govern the amount of text
generated per timestep and the total length of the text: the
expected length after t timesteps will be 〈L〉 × t. We primar-
ily focus on two cases here, the constant length distribution
L(λt) = δλλt , where δij is the Kronecker delta; and a Poisson
distribution L(λt) = e−λλλt/λt! with mean λ.

The vocabulary distribution Wi gives the relative fre-
quencies of words for individual i. In this work we consider
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Modern society depends on the flow of information over 
online social networks, and users of popular platforms gener-
ate substantial behavioural data about themselves and their 
social ties1–5. However, it remains unclear what fundamental 
limits exist when using these data to predict the activities and 
interests of individuals, and to what accuracy such predictions 
can be made using an individual’s social ties. Here, we show 
that 95% of the potential predictive accuracy for an individual 
is achievable using their social ties only, without requiring 
that individual’s data. We used information theoretic tools to 
estimate the predictive information in the writings of Twitter 
users, providing an upper bound on the available predictive 
information that holds for any predictive or machine learn-
ing methods. As few as 8–9 of an individual’s contacts are 
sufficient to obtain predictability compared with that of the 
individual alone. Distinct temporal and social effects are vis-
ible by measuring information flow along social ties, allowing 
us to better study the dynamics of online activity. Our results 
have distinct privacy implications: information is so strongly 
embedded in a social network that, in principle, one can pro-
file an individual from their available social ties even when the 
individual forgoes the platform completely.

The flow of information in online social platforms is now a 
significant factor in protest movements, national elections, and 
rumour and misinformation campaigns6–8. The study of social con-
tagion9, for example, is predicated on the flow of information over 
social ties and has benefited greatly from the availability of massive 
online social data sets and platforms on which to perform obser-
vational and experimental studies10,11. Data collected from online 
social platforms are a boon for researchers2, but are also a source 
of concern for privacy, as the social flow of predictive information 
can reveal details on both users and non-users of the platform5,12,13. 
Measuring information flow is challenging, in part because of the 
complexity of natural language and in part because of the difficulty 
in defining a quantitative and objective measure of information. 
Owing to these challenges, proxies are often studied instead: struc-
tural proxies focus on network characteristics, such as the move-
ments of keywords4,7,14,15 or adoptions of behaviours16–18. Temporal 
proxies attempt to quantify the information contained in the tim-
ings of user activity, as temporal relationships between user activity 
are known to reflect underlying coordination patterns19,20.

However, neither of the above approaches consider the full extent 
of information available: both the complete language data provided 
by individuals and their temporal activity patterns. Although, for 
example, temporal proxies are necessary in social networks where 
time series data are available but message content is not, for privacy 
or other reasons (for example, in mobile phone data sets), public 

postings to online social platforms present a unique opportunity to 
explore the textual content of messages in conjunction with their 
timings, giving a richer understanding of social ties.

Information theory allows us to mathematically quantify the 
information contained in data and is well suited to data in the 
form of online written communication. Although the mathemati-
cal definition of information is somewhat distinct from our com-
monly held notions of information and meaning, or semantics, 
information-theoretic measures are crucial for understanding how 
algorithms can learn from data. Nowadays, with such large volumes 
of data generated by online social platforms, both researchers and 
platform providers are often forced to interact with a platform’s data 
only computationally, using algorithms to quantify and make infer-
ences about users, and the accuracy of these inferences is predicated 
on the mathematical information contained in a user’s data.

In this work, we applied information-theoretic estimators to 
study information and information flow in a collection of Twitter 
user activities. These estimators fully incorporate language data 
while also accounting for the temporal ordering of user activities. 
We found that meaningful predictive information about individuals 
is encoded in their social ties, allowing us to determine fundamental 
limits of social predictability, independent of actual predictive or 
machine learning methods. We explored the roles of information 
recency and social activity patterns, as well as structural network 
properties such as information homophily between individuals.

We gathered a data set of n =  13,905 users, comprising egocen-
tric networks from the Twitter social media platform, and a total 
of m =  30,852,700 public postings from these users. Each of the 
n =  927 ego-networks consisted of one user (the ego) and their 15 
most frequently mentioned Twitter contacts (the alters), providing 
us with ego–alter pairs on which to measure information flow. See 
‘Data collection and filtering’ in the Methods section for full details 
on the data processing.

The ability of a machine learning method to accurately profile 
individuals from their online traces is reflected in the predictability 
of their written text. Indeed, with a language model trained to pre-
dict the words a user will post online, in principle, one can construct 
a profile of the user by evaluating the likelihoods of various words 
to be posted, such as terms related to politics. Thus, quantifying the 
predictive information contained within a user’s text allows us to 
understand the potential accuracy such methods can potentially 
achieve given a user’s data.

A text’s predictive information can be characterized by three 
related quantities, the entropy rate h, the perplexity 2h, and the pre-
dictability Π . The entropy rate quantifies the average uncertainty 
one has about future words given the text one has already observed 
(Fig. 1a). Higher entropies correspond to less predictable text and 

Information flow reveals prediction limits in online 
social activity
James P. Bagrow" "1,2*, Xipei Liu1,2 and Lewis Mitchell1,2,3*

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav



Rough Outline
• Basics


• file formats, code, databases

• Networks from data


• common tasks and good practices

• Case studies and examples

• Machine learning for data and networks

• Visualization (time permitting)

Slides available on 
bagrow.com

https://bagrow.com


Network data are simple
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.
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Network data are simple
Store graph topology → need to 
define the nodes (vertices) and the 
links (edges): 
G = (V, E), |V| = N, |E| = M
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.

3

Store graph topology → need to 
define the nodes (vertices) and the 
links (edges): 
G = (V, E), |V| = N, |E| = M



Network data are simple

GraphML

Complex but more flexible

<?xml version="1.0" encoding="UTF-8"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"   
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns 
     http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> 
  <graph id="G" edgedefault="undirected"> 
    <node id="n0"/> 
    <node id="n1"/> 
    <node id="n2"/> 
    <node id="n3"/> 
    <node id="n4"/> 
    <node id="n5"/> 
    <node id="n6"/> 
    <node id="n7"/> 
   <edge source="n0" target="n2"/> 
    <edge source="n1" target="n2"/> 
    <edge source="n2" target="n3"/> 
    <edge source="n3" target="n5"/> 
    <edge source="n3" target="n4"/> 
    <edge source="n4" target="n6"/> 
    <edge source="n6" target="n5"/> 
    <edge source="n5" target="n7"/> 
 </graph> 
</graphml>

Store graph topology → need to 
define the nodes (vertices) and the 
links (edges): 
G = (V, E), |V| = N, |E| = M
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Data surrounding network
What about extra attributes? 
G = (V, E, X) 
X = attributes, node labels or colors, 
timestamps 
Can also have edge attributes

Alice Bob e1

Bob Carol e2

Bob Dani e3

⋮ ⋮

Edgelist

attributes

Alice x11 x12

Bob x21 x22

Carol x31 x32

⋮ ⋮ ⋮

attributes

Node attribute list
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Data surrounding network
What about extra attributes? 
G = (V, E, X) 
X = attributes, node labels or colors, 
timestamps 
Can also have edge attributes

<?xml version="1.0" encoding="UTF-8"?> 
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"   
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
      xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns  
        http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"> 
  <key id="d0" for="node" attr.name="color" attr.type="string"> 
    <default>yellow</default> 
  </key> 
  <key id="d1" for="edge" attr.name="weight" attr.type="double"/> 
  <graph id="G" edgedefault="undirected"> 
    <node id="n0"> 
      <data key="d0">green</data> 
    </node> 
    <node id="n1"/> 
    <node id="n2"> 
      <data key="d0">blue</data> 
    </node> 
    <node id="n3"> 
      <data key="d0">red</data> 
    </node> 
    <node id="n4"/> 
    <node id="n5"> 
      <data key="d0">turquoise</data> 
    </node> 
    <edge id="e0" source="n0" target="n2"> 
      <data key="d1">1.0</data> 
    </edge> 
    <edge id="e1" source="n0" target="n1"> 
      <data key="d1">1.0</data> 
    </edge> 

GraphML
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Figure 3: Identifying the location of a missing node. (A) A scale-free network of 250 nodes with a single node hidden (⇧). The
neighbors of the hidden node are indicated with ⇤ while other nodes are �. The size and color of each node is proportional to
the rms error of the information transfer time from that node to every other node in the network. We see that the neighbors of
the missing node consistently have higher errors than the rest of the network. (B) The distributions of error and bias across the
ensemble of tampered networks for the hidden node’s neighbors, next-nearest neighbors, and non-neighbors. The median error
for neighbors is approximately 4.33 timesteps while for non-neighbors it is approximately 1.11 timesteps. The distributions are
significantly di↵erent (Mann-Whitney U test p ⌧ 10�10, Cohen’s d = 4.69). The next-nearest neighbors have errors comparable
to non-neighbors (p = 0.052) but we see a greater number of outliers skewing upward. This indicates that there are some network
e↵ects in how errors propagate, but they are relatively rare. Likewise, we see positive bias for neighbor nodes, significantly higher
than for non-neighbors (Mann-Whitney U test p ⌧ 10�10, Cohen’s d = 3.37). This positive bias indicates that information spreads
faster from (or to) neighbors of the hidden node than the SR model expects, supporting the intuition behind Fig. 1. To control for
the centrality of the hidden node, in each realization the hidden node was the node with the fifth highest degree.

in the network, false nodes that do not actually exist, the splitting of a true node into multiple false nodes, or the

merging of multiple true nodes into a single false node. Some of these errors will likely prove more challenging to

detect than others, but the benchmarking procedure we have introduced here may o↵er some hope towards tackling

these problems.
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Network data structures
To perform computations on a 
network, need a computable 
representation

—node
neighbors

node2neighbors = … 

print(node2neighbors['Alice']) 
{'Bob','Carol'}



Network libraries
It's a good exercise to build your own data structures 
or even library, but in practice: lots of existing libraries

recent versions have 
graph algorithms (+ always 
have adjacency matrix)

https://networkx.github.io 
https://igraph.org 
https://graph-tool.skewed.de

https://networkx.github.io
https://igraph.org
https://graph-tool.skewed.de


Graphical Interfaces and dashboards
I prefer to handle networks 
computationally, writing and running 
code—expressive, provenance 

Interactive interfaces easier to get 
started but then you max out quickly!

Can be good for 
visualizations



Graph databases—Big Data

GraphQL

https://neo4j.com 
https://jena.apache.org/ 
http://graphdb.ontotext.com 
https://graphql.org

(semantic web)

relational 
key-value 
document 
graph 
︙

databases:

https://neo4j.com
https://jena.apache.org/
http://graphdb.ontotext.com
https://graphql.org


Graph databases—Big Data
Applications of Graph DBs:

Knowledge graphs — semantic web 
Fraud detection — real time 
Recommendations (Netflix, Amazon)

Graph DBs best for real-time, high-
volume, local operations



Graph databases—Big Data
Applications of Graph DBs:

Knowledge graphs — semantic web 
Fraud detection — real time 
Recommendations (Netflix, Amazon)

Graph DBs best for real-time, high-
volume, local operations

isA

parentOf

siblings

created

studiedWith

Knowledge Graph

Triplestore/RDF:

Courtesy: Sebastian Dery

https://medium.com/@sderymail/challenges-of-knowledge-graph-part-1-d9ffe9e35214


Graph databases—Big Data

isA

parentOf

siblings

created

studiedWith

Knowledge Graph

Triplestore/RDF:

Courtesy: Sebastian Dery

Dataset Triples Size

Wikidata (2018-09-11) 7.2B 28GB
DBPedia 2016-04 English 1B 13GB
DBLP 2017 882M 1GB
Freebase 2B 11GB
YAGO2s Knowledge Base 159M 903MB
WordNet 3.1 5.5M 23MB

Some Knowledge Graphs

Courtesy: rdfhdt.org

https://medium.com/@sderymail/challenges-of-knowledge-graph-part-1-d9ffe9e35214
http://gaia.infor.uva.es/hdt/wikidata/wikidata2018_09_11.hdt.gz
http://fragments.dbpedia.org/hdt/dbpedia2016-04en.hdt
http://downloads.linkeddatafragments.org/hdt/dblp-20170124.hdt
http://gaia.infor.uva.es/hdt/freebase-rdf-2013-12-01-00-00.hdt.gz
http://gaia.infor.uva.es/hdt/yago2s-2013-05-08.hdt.gz
http://gaia.infor.uva.es/hdt/wordnet31.hdt.gz
http://www.rdfhdt.org/datasets/


Network data are not simple



There is an upstream task

What defines your network? 

Criteria for nodes? 
Criteria for links? 

(Is a network even a good idea?)

Only simple after addressing 
these questions (if you need to)



Example: social network from mobile phone data

Collective Response of Human Populations to Large-
Scale Emergencies
James P. Bagrow1,2*., Dashun Wang1,2., Albert-László Barabási1,2,3

1 Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts, United States of America, 2 Center for Cancer Systems
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United States of America

Abstract

Despite recent advances in uncovering the quantitative features of stationary human activity patterns, many applications,
from pandemic prediction to emergency response, require an understanding of how these patterns change when the
population encounters unfamiliar conditions. To explore societal response to external perturbations we identified real-time
changes in communication and mobility patterns in the vicinity of eight emergencies, such as bomb attacks and
earthquakes, comparing these with eight non-emergencies, like concerts and sporting events. We find that communication
spikes accompanying emergencies are both spatially and temporally localized, but information about emergencies spreads
globally, resulting in communication avalanches that engage in a significant manner the social network of eyewitnesses.
These results offer a quantitative view of behavioral changes in human activity under extreme conditions, with potential
long-term impact on emergency detection and response.
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Introduction

Current research on human dynamics is limited to data collected
under normal and stationary circumstances [1], capturing the regular
daily activity of individuals [2,3,4,5,6,7,8,9,10,11,12,13,14,15]. Yet,
there is exceptional need to understand how people change their
behavior when exposed to rapidly changing or unfamiliar conditions
[1], such as life-threatening epidemic outbreaks [4,12], emergencies
and traffic anomalies, as models based on stationary events are
expected to break down under these circumstances. Such rapid
changes in conditions are often caused by natural, technological or
societal disasters, from hurricanes to violent conflicts [16]. The
possibility to study such real time changes has emerged recently
thanks to the widespread use of mobile phones, which track both user
mobility [2,3,6,17] and real-time communications along the links of
the underlying social network [7,18]. Here we take advantage of the
fact that mobile phones act as in situ sensors at the site of an
emergency, to study the real-time behavioral patterns of the local
population under external perturbations caused by emergencies.
Advances in this direction not only help redefine our understanding
of information propagation [19] and cooperative human actions
under externally induced perturbations, which is the main motivation
of our work, but also offer a new perspective on panic [20,21,22,23]
and emergency protocols in a data-rich environment [24].

Our starting point is a country-wide mobile communications
dataset, culled from the anonymized billing records of approxi-

mately ten million mobile phone subscribers of a mobile company
which covers about one-fourth of subscribers in a country with
close to full mobile penetration. It provides the time and duration
of each mobile phone call [7], together with information on the
tower that handled the call, thus capturing the real-time locations
of the users [3,6,25] (Methods, File S1, Fig. A). To identify
potential societal perturbations, we scanned media reports
pertaining to the coverage area between January 2007 and
January 2009 and developed a corpus of times and locations for
eight societal, technological, and natural emergencies, ranging
from bombings to a plane crash, earthquakes, floods and storms
(Table 1). Approximately 30% of the events mentioned in the
media occurred in locations with sparse cellular coverage or
during times when few users are active (like very early in the
morning). The remaining events do offer, however, a sufficiently
diverse corpus to explore the generic vs. unique changes in the
activity patterns in response to an emergency. Here we discuss four
events, chosen for their diversity: (1) a bombing, resulting in
several injuries (no fatalities); (2) a plane crash resulting in a
significant number of fatalities; (3) an earthquake whose epicenter
was outside our observation area but affected the observed
population, causing mild damage but no casualties; and (4) a
power outage (blackout) affecting a major metropolitan area ( File
S1, Fig. B). To distinguish emergencies from other events that
cause collective changes in human activity, we also explored eight
planned events, such as sports games and a popular local sports

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17680
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Link communities reveal multiscale complexity in
networks
Yong-Yeol Ahn1,2*, James P. Bagrow1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems
of interacting objects, unifying the study of diverse phenomena
including biological organisms and human society1–3. One crucial
step when studying the structure and dynamics of networks is to
identify communities4,5: groups of related nodes that correspond
to functional subunits such as protein complexes6,7 or social
spheres8–10. Communities in networks often overlap9,10 such that
nodes simultaneously belong to several groups. Meanwhile, many
networks are known to possess hierarchical organization, where
communities are recursively grouped into a hierarchical struc-
ture11–13. However, the fact that many real networks have com-
munities with pervasive overlap, where each and every node
belongs to more than one group, has the consequence that a global
hierarchy of nodes cannot capture the relationships between over-
lapping groups. Here we reinvent communities as groups of links
rather than nodes and show that this unorthodox approach suc-
cessfully reconciles the antagonistic organizing principles of over-
lapping communities and hierarchy. In contrast to the existing
literature, which has entirely focused on grouping nodes, link
communities naturally incorporate overlap while revealing hier-
archical organization. We find relevant link communities in many
networks, including major biological networks such as protein–
protein interaction6,7,14 and metabolic networks11,15,16, and show
that a large social network10,17,18 contains hierarchically organized
community structures spanning inner-city to regional scales while
maintaining pervasive overlap. Our results imply that link com-
munities are fundamental building blocks that reveal overlap and
hierarchical organization in networks to be two aspects of the
same phenomenon.

Although no common definition has been agreed upon, it is widely
accepted that a community should have more internal than external
connections19–24. Counterintuitively, highly overlapping communities
can have many more external than internal connections (Fig. 1a, b).
Because pervasive overlap breaks even this fundamental assumption, a
new approach is needed.

The discovery of hierarchy and community organization has always
been considered a problem of determining the correct membership
(or memberships) of each node. Notice that, whereas nodes belong to
multiple groups (individuals have families, co-workers and friends;
Fig. 1c), links often exist for one dominant reason (two people are in
the same family, work together or have common interests). Instead of
assuming that a community is a set of nodes with many links between
them, we consider a community to be a set of closely interrelated links.

Placing each link in a single context allows us to reveal hierarchical
and overlapping relationships simultaneously. We use hierarchical
clustering with a similarity between links to build a dendrogram
where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-
drogram, links occupy unique positions whereas nodes naturally
occupy multiple positions, owing to their links. We extract link com-
munities at multiple levels by cutting this dendrogram at various
thresholds. Each node inherits all memberships of its links and can
thus belong to multiple, overlapping communities. Even though we
assign only a single membership per link, link communities can also
capture multiple relationships between nodes, because multiple
nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, but to
obtain the most relevant communities it is necessary to determine the
best level at which to cut the tree. For this purpose, we introduce a
natural objective function, the partition density, D, based on link
density inside communities; unlike modularity20, D does not suffer
from a resolution limit25 (Methods). Computing D at each level of the
link dendrogram allows us to pick the best level to cut (although
meaningful structure exists above and below that threshold). It is
also possible to optimize D directly. We can now formulate overlap-
ping community discovery as a well-posed optimization problem,
accounting for overlap at every node without penalizing that nodes
participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around
the word ‘Newton’ in a network of commonly associated English
words. (See Supplementary Information, section 6, for details on
networks used throughout the text.) The ‘clever, wit’ community is
correctly identified inside the ‘smart/intellect’ community. The
words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,
‘weight’ and ‘apple’ communities, illustrating that link communities
capture multiple relationships between nodes. See Supplementary
Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,
real-world evidence that a link-based approach is superior to exist-
ing, node-based approaches. Using data-driven performance mea-
sures, we analyse link communities found at the maximum partition
density in real-world networks, compared with node communities
found by three widely used and successful methods: clique percola-
tion9, greedy modularity optimization26 and Infomap21. Clique per-
colation is the most prominent overlapping community algorithm,
greedy modularity optimization is the most popular modularity-
based20 technique and Infomap is often considered the most accurate
method available27.

We compiled a test group of 11 networks covering many domains
of active research and representing the wide body of available data
(Supplementary Table 2). These networks vary from small to large,
from sparse to dense, and from those with modular structure to those
with highly overlapping structure. We highlight a few data sets of
particular scientific importance: The mobile phone network is the

*These authors contributed equally to this work.
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Mesoscopic Structure and Social Aspects of Human
Mobility
James P. Bagrow1,2*, Yu-Ru Lin3,4

1 Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America, 2 Center for Complex Network Research,

Northeastern University, Boston, Massachusetts, United States of America, 3 College of Computer and Information Science, Northeastern University, Boston,
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Abstract

The individual movements of large numbers of people are important in many contexts, from urban planning to disease
spreading. Datasets that capture human mobility are now available and many interesting features have been discovered,
including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows
of mobility – the sets and sequences of visited locations – have not been well studied. We show that individual mobility is
dominated by small groups of frequently visited, dynamically close locations, forming primary ‘‘habitats’’ capturing typical
daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical
contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is
universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by
current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel.
Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may
influence processes such as information spreading and revealing new connections between human mobility and social
networks.
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Introduction

Understanding human movement is essential for a range of
society-wide technological problems and policy issues, from urban
planning [1] and traffic forecasting [2], to the modeling and
simulation of epidemics [3,4,5]. Recent studies on mobility
patterns have shown that spatiotemporal traces are highly non-
random [6,7,8], exhibiting distinct dynamics subject to geographic
constraints [9,10,11,12,13,14]. Analytical models have been
developed to reflect individual mobility dynamics such as the
tendency to move back and forth between fixed locations on a
regular basis [15]. When examining populations, movement
patterns may be highly correlated with dynamics such as contact
preference [9,11], yet this has not been well studied at the
individual level. Previous work on human mobility has focused
primarily on simple measures that forego the majority of the
detailed information available in existing data. There is good
reason for this, as basic approaches tend to be most fruitful for new
problems. Yet these measures reduce an entire mobility pattern to
a single scalar quantity, potentially missing important details and
throwing away crucial information.

A number of approaches are available for studying the
geographic substructure of individual mobility. One route is to
perform spatial clustering [16] on the specific locations an

individual visits, potentially revealing important, related groups
of locations. However, such analysis is purely spatial, neglecting
the detailed spatiotemporal trajectories available for each person,
reducing their mobility to a collection of geographic points and
ignoring any information regarding the flows, or frequencies of
movement, between particular locations. At the same time, the
raw spatial distance separating two locations may not be
meaningful: a short walk and a short car trip typically cover very
different distances in the same amount of time, and the cognitive
and economic costs associated with air travel depend only mildly
(if at all) upon distance [17]. Modeling frameworks such as the
Theory of Intervening Opportunities [18] and the recently
introduced Radiation model [19] further argue that raw distances
are not necessarily the most effective determinant for travel. In this
work we show the importance of incorporating how frequently an
individual travels between two locations, which naturally accounts
for spatial and dynamic effects while revealing the underlying
spatiotemporal features of human mobility.

Results

Beginning from a country-wide mobile phone dataset
[20,7,21,8,15,22,23,24], we extract 34 weeks of call activity for a
sample population of approximately 90 thousand phone users.
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Introduction

Current research on human dynamics is limited to data collected
under normal and stationary circumstances [1], capturing the regular
daily activity of individuals [2,3,4,5,6,7,8,9,10,11,12,13,14,15]. Yet,
there is exceptional need to understand how people change their
behavior when exposed to rapidly changing or unfamiliar conditions
[1], such as life-threatening epidemic outbreaks [4,12], emergencies
and traffic anomalies, as models based on stationary events are
expected to break down under these circumstances. Such rapid
changes in conditions are often caused by natural, technological or
societal disasters, from hurricanes to violent conflicts [16]. The
possibility to study such real time changes has emerged recently
thanks to the widespread use of mobile phones, which track both user
mobility [2,3,6,17] and real-time communications along the links of
the underlying social network [7,18]. Here we take advantage of the
fact that mobile phones act as in situ sensors at the site of an
emergency, to study the real-time behavioral patterns of the local
population under external perturbations caused by emergencies.
Advances in this direction not only help redefine our understanding
of information propagation [19] and cooperative human actions
under externally induced perturbations, which is the main motivation
of our work, but also offer a new perspective on panic [20,21,22,23]
and emergency protocols in a data-rich environment [24].

Our starting point is a country-wide mobile communications
dataset, culled from the anonymized billing records of approxi-

mately ten million mobile phone subscribers of a mobile company
which covers about one-fourth of subscribers in a country with
close to full mobile penetration. It provides the time and duration
of each mobile phone call [7], together with information on the
tower that handled the call, thus capturing the real-time locations
of the users [3,6,25] (Methods, File S1, Fig. A). To identify
potential societal perturbations, we scanned media reports
pertaining to the coverage area between January 2007 and
January 2009 and developed a corpus of times and locations for
eight societal, technological, and natural emergencies, ranging
from bombings to a plane crash, earthquakes, floods and storms
(Table 1). Approximately 30% of the events mentioned in the
media occurred in locations with sparse cellular coverage or
during times when few users are active (like very early in the
morning). The remaining events do offer, however, a sufficiently
diverse corpus to explore the generic vs. unique changes in the
activity patterns in response to an emergency. Here we discuss four
events, chosen for their diversity: (1) a bombing, resulting in
several injuries (no fatalities); (2) a plane crash resulting in a
significant number of fatalities; (3) an earthquake whose epicenter
was outside our observation area but affected the observed
population, causing mild damage but no casualties; and (4) a
power outage (blackout) affecting a major metropolitan area ( File
S1, Fig. B). To distinguish emergencies from other events that
cause collective changes in human activity, we also explored eight
planned events, such as sports games and a popular local sports
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It is instructive to examine further the statistics of link communities
in the metabolic and mobile phone networks (Fig. 3). The community
size distribution at the optimum value of D is heavy tailed for both
networks, whereas the number of communities per node distinguishes
them (Fig. 3, insets): Mobile phone users are limited to a smaller range
of community memberships, most likely as a result of social and time
constraints. Meanwhile, the membership distribution of the metabolic
network displays the universality of currency metabolites (water, ATP
and so on) through the large number of communities they participate
in. Notable previous work11,15 removed currency metabolites before
identifying meaningful community structure. The statistics presented
here match current knowledge about the two systems, further con-
firming the communities’ relevance.

Having established that link communities at the maximal partition
density are meaningful and relevant, we now show that the link
dendrogram reveals meaningful communities at different scales.
Figure 4a–c shows that mobile phone users in a community are
spatially co-located. Figure 4a maps the most likely geographic loca-
tions of all users in the network; several cities are present. In Fig. 4b,
we show (insets) several communities at different cuts above the
optimum threshold, revealing small, intra-city communities. Below
the optimum threshold, larger, yet still spatially correlated, com-
munities exist (Fig. 4c). Because we expect a tight-knit community
to have only small geographical dispersion, the clustered structures
on the map indicate that the communities are meaningful. The geo-
graphical correlation of each community does not suddenly break
down, but is sustained over a wide range of thresholds. In Fig. 4d, we
look more closely at the social network of the largest community in
Fig. 4c, extracting the structure of its largest subcommunity along
with its remaining hierarchy and revealing the small-scale structures
encoded in the link dendrogram. This example provides evidence for
the presence of spatial, hierarchical organization at a societal scale. To
validate the hierarchical organization of communities quantitatively

throughout the dendrogram, we use a randomized control dendro-
gram that quantifies how community quality would evolve if there
were no hierarchical organization beyond a certain point. Figure 4e
shows that the quality of the actual communities decays much more
slowly than the control, indicating that real link dendrograms possess
a large range of high quality community structures. The quantitative
results of Fig. 4 are typical for the full test group, implying that rich,
meaningful community structure is contained within the link den-
drogram. Additional results supporting these conclusions are pre-
sented in Supplementary Information, section 7.

Many cutting-edge networks are far from complete. For example,
an ambitious project to map all protein–protein interactions in yeast
is currently estimated to detect approximately 20% of connections14.
As the rate of data collection continues to increase, networks become
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Figure 3 | Community and membership distributions for the metabolic and
mobile phone networks. The distribution of community sizes and node
memberships (insets). Community size shows a heavy tail. The number of
memberships per node is reasonable for both networks: we do not observe
phone users that belong to large numbers of communities and we correctly
identify currency metabolites, such as water, ATP and inorganic phosphate
(Pi), that are prevalently used throughout metabolism. The appearance of
currency metabolites in many metabolic reactions is naturally incorporated
into link communities, whereas their presence hindered community
identification in previous work11,15.
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Link communities reveal multiscale complexity in
networks
Yong-Yeol Ahn1,2*, James P. Bagrow1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems
of interacting objects, unifying the study of diverse phenomena
including biological organisms and human society1–3. One crucial
step when studying the structure and dynamics of networks is to
identify communities4,5: groups of related nodes that correspond
to functional subunits such as protein complexes6,7 or social
spheres8–10. Communities in networks often overlap9,10 such that
nodes simultaneously belong to several groups. Meanwhile, many
networks are known to possess hierarchical organization, where
communities are recursively grouped into a hierarchical struc-
ture11–13. However, the fact that many real networks have com-
munities with pervasive overlap, where each and every node
belongs to more than one group, has the consequence that a global
hierarchy of nodes cannot capture the relationships between over-
lapping groups. Here we reinvent communities as groups of links
rather than nodes and show that this unorthodox approach suc-
cessfully reconciles the antagonistic organizing principles of over-
lapping communities and hierarchy. In contrast to the existing
literature, which has entirely focused on grouping nodes, link
communities naturally incorporate overlap while revealing hier-
archical organization. We find relevant link communities in many
networks, including major biological networks such as protein–
protein interaction6,7,14 and metabolic networks11,15,16, and show
that a large social network10,17,18 contains hierarchically organized
community structures spanning inner-city to regional scales while
maintaining pervasive overlap. Our results imply that link com-
munities are fundamental building blocks that reveal overlap and
hierarchical organization in networks to be two aspects of the
same phenomenon.

Although no common definition has been agreed upon, it is widely
accepted that a community should have more internal than external
connections19–24. Counterintuitively, highly overlapping communities
can have many more external than internal connections (Fig. 1a, b).
Because pervasive overlap breaks even this fundamental assumption, a
new approach is needed.

The discovery of hierarchy and community organization has always
been considered a problem of determining the correct membership
(or memberships) of each node. Notice that, whereas nodes belong to
multiple groups (individuals have families, co-workers and friends;
Fig. 1c), links often exist for one dominant reason (two people are in
the same family, work together or have common interests). Instead of
assuming that a community is a set of nodes with many links between
them, we consider a community to be a set of closely interrelated links.

Placing each link in a single context allows us to reveal hierarchical
and overlapping relationships simultaneously. We use hierarchical
clustering with a similarity between links to build a dendrogram
where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-
drogram, links occupy unique positions whereas nodes naturally
occupy multiple positions, owing to their links. We extract link com-
munities at multiple levels by cutting this dendrogram at various
thresholds. Each node inherits all memberships of its links and can
thus belong to multiple, overlapping communities. Even though we
assign only a single membership per link, link communities can also
capture multiple relationships between nodes, because multiple
nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, but to
obtain the most relevant communities it is necessary to determine the
best level at which to cut the tree. For this purpose, we introduce a
natural objective function, the partition density, D, based on link
density inside communities; unlike modularity20, D does not suffer
from a resolution limit25 (Methods). Computing D at each level of the
link dendrogram allows us to pick the best level to cut (although
meaningful structure exists above and below that threshold). It is
also possible to optimize D directly. We can now formulate overlap-
ping community discovery as a well-posed optimization problem,
accounting for overlap at every node without penalizing that nodes
participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around
the word ‘Newton’ in a network of commonly associated English
words. (See Supplementary Information, section 6, for details on
networks used throughout the text.) The ‘clever, wit’ community is
correctly identified inside the ‘smart/intellect’ community. The
words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,
‘weight’ and ‘apple’ communities, illustrating that link communities
capture multiple relationships between nodes. See Supplementary
Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,
real-world evidence that a link-based approach is superior to exist-
ing, node-based approaches. Using data-driven performance mea-
sures, we analyse link communities found at the maximum partition
density in real-world networks, compared with node communities
found by three widely used and successful methods: clique percola-
tion9, greedy modularity optimization26 and Infomap21. Clique per-
colation is the most prominent overlapping community algorithm,
greedy modularity optimization is the most popular modularity-
based20 technique and Infomap is often considered the most accurate
method available27.

We compiled a test group of 11 networks covering many domains
of active research and representing the wide body of available data
(Supplementary Table 2). These networks vary from small to large,
from sparse to dense, and from those with modular structure to those
with highly overlapping structure. We highlight a few data sets of
particular scientific importance: The mobile phone network is the
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Abstract

The individual movements of large numbers of people are important in many contexts, from urban planning to disease
spreading. Datasets that capture human mobility are now available and many interesting features have been discovered,
including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows
of mobility – the sets and sequences of visited locations – have not been well studied. We show that individual mobility is
dominated by small groups of frequently visited, dynamically close locations, forming primary ‘‘habitats’’ capturing typical
daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical
contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is
universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by
current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel.
Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may
influence processes such as information spreading and revealing new connections between human mobility and social
networks.
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Introduction

Understanding human movement is essential for a range of
society-wide technological problems and policy issues, from urban
planning [1] and traffic forecasting [2], to the modeling and
simulation of epidemics [3,4,5]. Recent studies on mobility
patterns have shown that spatiotemporal traces are highly non-
random [6,7,8], exhibiting distinct dynamics subject to geographic
constraints [9,10,11,12,13,14]. Analytical models have been
developed to reflect individual mobility dynamics such as the
tendency to move back and forth between fixed locations on a
regular basis [15]. When examining populations, movement
patterns may be highly correlated with dynamics such as contact
preference [9,11], yet this has not been well studied at the
individual level. Previous work on human mobility has focused
primarily on simple measures that forego the majority of the
detailed information available in existing data. There is good
reason for this, as basic approaches tend to be most fruitful for new
problems. Yet these measures reduce an entire mobility pattern to
a single scalar quantity, potentially missing important details and
throwing away crucial information.

A number of approaches are available for studying the
geographic substructure of individual mobility. One route is to
perform spatial clustering [16] on the specific locations an

individual visits, potentially revealing important, related groups
of locations. However, such analysis is purely spatial, neglecting
the detailed spatiotemporal trajectories available for each person,
reducing their mobility to a collection of geographic points and
ignoring any information regarding the flows, or frequencies of
movement, between particular locations. At the same time, the
raw spatial distance separating two locations may not be
meaningful: a short walk and a short car trip typically cover very
different distances in the same amount of time, and the cognitive
and economic costs associated with air travel depend only mildly
(if at all) upon distance [17]. Modeling frameworks such as the
Theory of Intervening Opportunities [18] and the recently
introduced Radiation model [19] further argue that raw distances
are not necessarily the most effective determinant for travel. In this
work we show the importance of incorporating how frequently an
individual travels between two locations, which naturally accounts
for spatial and dynamic effects while revealing the underlying
spatiotemporal features of human mobility.

Results

Beginning from a country-wide mobile phone dataset
[20,7,21,8,15,22,23,24], we extract 34 weeks of call activity for a
sample population of approximately 90 thousand phone users.
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spatial social network

Each call activity time series encodes the spatiotemporal trajectory
of that user. (See Materials and Methods and File S1 for details
about the data.) For each user we construct a directed, weighted
mobility network capturing the detailed flows between individual
locations (represented using cellular towers). Examples of both
mobility networks and spatiotemporal mobility flows are shown in
Figs. 1A and B, respectively. The recurrent and repetitive nature
of human motion is clearly visible in Fig. 0B, where we explode
the user trajectories vertically in time. We apply to each user’s
mobility network an information-theoretic graph partitioning
method known as Infomap [25], which uses the flows of random
walkers to find groups of dynamically related nodes in directed,
weighted networks. We do not use spatial or distance information
in partitioning, instead Infomap mirrors the stochastic process
underlying human mobility flows; see File S1 Sec. S3 for details.
(Infomap’s underlying mechanism is further justified in this
context by the results of [22].) The groups of locations that we
discover, which we refer to as mobility ‘‘habitats,’’ will be shown to
be crucial to both the spatiotemporal dynamics of human motion,
and to the interplay between mobility and human interaction
patterns. We rank habitats in decreasing order of phone activity,
such that a user’s most frequently visited habitat is Habitat 1 or the
primary habitat. We observe that human mobility is almost
universally dominated by the primary habitat, where the majority
of user call activity occurs–and thus it incorporates both home and
work, home and school, or other major social contexts–along with
a number of less active subsidiary habitats (see Fig. 1C, File S1 Fig.
B, Sec. S3.2). We further see in Fig. 1D that most users possess 5–
20 habitats, while only approximately 7% of users have a single
habitat. Note that these habitats, unique for each member of the
population, differ greatly from existing work on partitioning
mobility or social connectivity [26,13,27], which instead focus

entirely on partitioning a single geographic network aggregated
from large populations.

Spatial characteristics
The spatial extent of a user’s total mobility pattern has been

shown to be well summarized by a single scalar quantity, the
radius of gyration, or gyradius, R2

g~vDri{rCMD2wi, where ri is
the spatial position of phone call i and rCM is the user’s center of
mass [7]. In addition to using the global gyradius we also compute
the reduced radius of gyration rg(h) for each habitat h, considering
only those locations and calls contained within that habitat. In
Fig. 2A we plot the population distributions of the first three
habitat’s rg, compared with the total gyradius Rg considering all
calls placed from all visited locations. This shows that the spatial
extent of habitats tends to be far smaller than the total mobility,
often by an order of magnitude, and that most users have a habitat
rg between 1–10 km. See also File S1 Fig. D. In Fig. 2B we study
the functional dependence of the primary habitat’s gyradius,
rg(h1), versus Rg. We uncover an intriguing power law scaling
relation characterized by two regimes, where rg(h1)*Ra

g with
a~1 for RgvR!&5 km, and a~1=3 for RgwR!. The linear
relationship below this critical radius R! indicates that those users
(roughly 8% of the population) are mostly characterized by a single
habitat. (In fact, only 54.8% of users with Rgv5 km have one
habitat, but that 97.6% of their calls on average occur within their
primary habitat.) But once a user’s range extends beyond this
critical 5 km cutoff (true for 92% of the population) a new regime
emerges where multiple habitats exist and tend to be far smaller
and more spatially cohesive than the total mobility (since av1).
(For users with Rgw5 km, only 2.9% have one habitat and the
primary habitat accounts for 78.7% of activity on average.)
Finally, in Fig. 2C we show the geographic distance d(h1,h2)

Figure 1. Habitats reveal the spatiotemporal substructure of human mobility patterns. (A) Spatial trajectories of two users, one traveling
to a large number of locations and another covering a smaller range. Node size indicates the amount of time spent at a particular location (as
quantified by mobile phone activity), node color represents the location’s habitat detected using Infomap (see Methods), and line width
approximates the number of trips between locations. Habitats are ordered by call volume such that Habitat 1 contains the most calls. (B) Exploding
the spatial trajectories from A in time (vertical axis), the recurrent nature of human mobility becomes evident, with a number of trips featuring both
consistent destinations and consistently repetitive occurrence (zoom). These features are the root cause of the high predictability that human motion
is known to possess. (C) The daily call dynamics of the three most active habitats, as well as the overall dynamics (summed over all habitats). The
primary habitat contains the majority of temporal activity. We see that User 1 tends to occupy his or her second and third habitats primarily at night,
while User 2 is more evenly distributed. (D) The distribution of the number of habitats per user. The median number of habitats is 11. Due to their
typical heterogeneity, we characterize population distributions using percentiles, proportional to the cumulative distribution.
doi:10.1371/journal.pone.0037676.g001
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Example: brain networks

of a network. The two metrics of a real network can be com-
pared with those in benchmark networks such as random and
regular networks. A small-world network possesses higher
local interconnectivity than a random network (low clustering
coefficient and short characteristic path length) and higher
global integrity than a regular network (high clustering coeffi-
cient and long path lengths).

Network efficiency is a more biologically relevant metric
to describe brain networks from the perspective of information
flow. The global efficiency of a network is defined as themean
of the inverse of shortest path length in the network. The local
efficiency of a network is measured as the averaged global
efficiency of the subgraph composed of the neighbors of all
nodes. Global efficiency and local efficiency measure how
efficiently information is exchanged at the global and local
levels, respectively [48, 49]. Using these efficiency measure-
ments, networks with high global and local efficiencies are
also considered to be small-world [48–50].

Nodal Centrality Several graphic metrics can be used to mea-
sure nodal centrality such as degree, efficiency, and eigenvec-
tor. These measures can quantify the roles of a node within a

network from different perspectives (Fig. 2). The degree of a
node is the number (in a binary graph) or the total connectivity
strength (in a weighted graph) of all edges that link to the
node, reflecting the most directly quantifiable measure of
centrality. The nodal efficiency is calculated as the averaged
reciprocal shortest path length between the node and the other
nodes, representing the ability of information transfer from
itself to other nodes in the entire network [50]. The eigenvec-
tor centrality is defined as the first eigenvector of the adjacent
matrix corresponding to the largest eigenvalue [51], and with
its recursive property, it is able to capture the global promi-
nence of a node [52]. In the brain networks, regions with high
nodal centrality are usually referred as hubs.

Human Connectomics Based on Graph Theory

Using the abovementioned graph theory metrics, recent stud-
ies have consistently demonstrated that both human brain
functional and structural networks exhibit many nontrivial
topological properties such as small-worldness structure, high
efficiency of information transfer, and highly connected hub
regions located predominantly in the medial prefrontal and

Fig. 2 Illustrations of basic network metrics. As an example, we showed
a binary network with 16 nodes and 29 edges. a The length of the shortest
path between two nodes corresponds to the distance between them. Here,
the two nodes, a and b, connect to each other by three steps indicated by
the red lines. b The clustering coefficient of a node represents the extent
of local interconnectivity among its neighbors. The node labeled with
“high clustering” (red) has in total of four neighbors (yellow) that are

linked by four existing edges of six possible edges. Thus, the clustering
coefficient of the labeled node is 4/6 (i.e., 0.67). Another node labeled
with “low clustering” (red) has a clustering coefficient value of 0 because
there are no existing edges among its three neighbors (yellow). c The
nodal degree is calculated as the number of edges linking with it. The
node labeled with “high degree” (red) has a degree of seven and the node
labeled with “low degree” (pink) has a degree of 1

Fig. 1 A flowchart of construction and analysis functional and structural
brain networks used in the ADHD studies. Briefly, the time courses from
the EEG/fMRI data or the fiber pathways from diffusion MRI data are
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a few other disorders, whereas a few phenotypes such as colon
cancer (linked to k ! 50 other disorders) or breast cancer (k ! 30)
represent hubs that are connected to a large number of distinct
disorders. The prominence of cancer among the most connected
disorders arises in part from the many clinically distinct cancer
subtypes tightly connected with each other through common tumor
repressor genes such as TP53 and PTEN.

Although the HDN layout was generated independently of any
knowledge on disorder classes, the resulting network is naturally
and visibly clustered according to major disorder classes. Yet, there
are visible differences between different classes of disorders.
Whereas the large cancer cluster is tightly interconnected due to the
many genes associated with multiple types of cancer (TP53, KRAS,
ERBB2, NF1, etc.) and includes several diseases with strong pre-
disposition to cancer, such as Fanconi anemia and ataxia telangi-
ectasia, metabolic disorders do not appear to form a single distinct
cluster but are underrepresented in the giant component and
overrepresented in the small connected components (Fig. 2a). To
quantify this difference, we measured the locus heterogeneity of
each disorder class and the fraction of disorders that are connected
to each other in the HDN (see SI Text). We find that cancer and
neurological disorders show high locus heterogeneity and also
represent the most connected disease classes, in contrast with
metabolic, skeletal, and multiple disorders that have low genetic
heterogeneity and are the least connected (SI Fig. 7).

Properties of the DGN. In the DGN, two disease genes are connected
if they are associated with the same disorder, providing a comple-

mentary, gene-centered view of the diseasome. Given that the links
signify related phenotypic association between two genes, they
represent a measure of their phenotypic relatedness, which could be
used in future studies, in conjunction with protein–protein inter-
actions (6, 7, 19), transcription factor-promoter interactions (20),
and metabolic reactions (8), to discover novel genetic interactions.
In the DGN, 1,377 of 1,777 disease genes are connected to other
disease genes, and 903 genes belong to a giant component (Fig. 2b).
Whereas the number of genes involved in multiple diseases de-
creases rapidly (SI Fig. 6d; light gray nodes in Fig. 2b), several
disease genes (e.g., TP53, PAX6) are involved in as many as 10
disorders, representing major hubs in the network.

Functional Clustering of HDN and DGN. To probe how the topology
of the HDN and GDN deviates from random, we randomly
shuffled the associations between disorders and genes, while keep-
ing the number of links per each disorder and disease gene in the
bipartite network unchanged. Interestingly, the average size of the
giant component of 104 randomized disease networks is 643 " 16,
significantly larger than 516 (P # 10$4; for details of statistical
analyses of the results reported hereafter, see SI Text), the actual
size of the HDN (SI Fig. 6c). Similarly, the average size of the giant
component from randomized gene networks is 1,087 " 20 genes,
significantly larger than 903 (P # 10$4), the actual size of the DGN
(SI Fig. 6e). These differences suggest important pathophysiological
clustering of disorders and disease genes. Indeed, in the actual
networks disorders (genes) are more likely linked to disorders
(genes) of the same disorder class. For example, in the HDN there
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.
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Disorder Name

Bone
Cancer
Cardiovascular
Connective tissue disorder
Dermatological
Developmental
Ear, Nose, Throat
Endocrine
Gastrointestinal
Hematological
Immunological
Metabolic
Muscular
Neurological
Nutritional
Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia
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Understanding the group
dynamics and success of
teams
Michael Klug1 and James P. Bagrow1,2,3
1Department of Mathematics and Statistics, 2Vermont Complex Systems Center, and
3Vermont Advanced Computing Core, The University of Vermont, Burlington, VT, USA

Complex problems often require coordinated group effort and
can consume significant resources, yet our understanding of
how teams form and succeed has been limited by a lack of
large-scale, quantitative data. We analyse activity traces and
success levels for approximately 150 000 self-organized, online
team projects. While larger teams tend to be more successful,
workload is highly focused across the team, with only a few
members performing most work. We find that highly successful
teams are significantly more focused than average teams of
the same size, that their members have worked on more
diverse sets of projects, and the members of highly successful
teams are more likely to be core members or ‘leads’ of other
teams. The relations between team success and size, focus and
especially team experience cannot be explained by confounding
factors such as team age, external contributions from non-team
members, nor by group mechanisms such as social loafing.
Taken together, these features point to organizational principles
that may maximize the success of collaborative endeavours.

1. Introduction
Massive datasets describing the activity patterns of large human
populations now provide researchers with rich opportunities
to quantitatively study human dynamics [1,2], including the
activities of groups or teams [3,4]. New tools, including electronic
sensor systems, can quantify team activity and performance
[4,5]. With the rise in prominence of network science [6,7],
much effort has gone into discovering meaningful groups within
social networks [8–15] and quantifying their evolution [15,16].
Teams are increasingly important in research and industrial
efforts [3,4,17–21], and small, coordinated groups are a significant
component of modern human conflict [22,23]. There are many
important dimensions along which teams should be studied,
including their size, how work is distributed among their
members, and the differences and similarities in the experiences
and backgrounds of those team members. Recently, there
has been much debate on the ‘group size hypothesis’ that

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.

3

vs.
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Common task: thinning

Network is very dense, lots of potentially spurious edges 
How to sparsify?

of a network. The two metrics of a real network can be com-
pared with those in benchmark networks such as random and
regular networks. A small-world network possesses higher
local interconnectivity than a random network (low clustering
coefficient and short characteristic path length) and higher
global integrity than a regular network (high clustering coeffi-
cient and long path lengths).

Network efficiency is a more biologically relevant metric
to describe brain networks from the perspective of information
flow. The global efficiency of a network is defined as themean
of the inverse of shortest path length in the network. The local
efficiency of a network is measured as the averaged global
efficiency of the subgraph composed of the neighbors of all
nodes. Global efficiency and local efficiency measure how
efficiently information is exchanged at the global and local
levels, respectively [48, 49]. Using these efficiency measure-
ments, networks with high global and local efficiencies are
also considered to be small-world [48–50].

Nodal Centrality Several graphic metrics can be used to mea-
sure nodal centrality such as degree, efficiency, and eigenvec-
tor. These measures can quantify the roles of a node within a

network from different perspectives (Fig. 2). The degree of a
node is the number (in a binary graph) or the total connectivity
strength (in a weighted graph) of all edges that link to the
node, reflecting the most directly quantifiable measure of
centrality. The nodal efficiency is calculated as the averaged
reciprocal shortest path length between the node and the other
nodes, representing the ability of information transfer from
itself to other nodes in the entire network [50]. The eigenvec-
tor centrality is defined as the first eigenvector of the adjacent
matrix corresponding to the largest eigenvalue [51], and with
its recursive property, it is able to capture the global promi-
nence of a node [52]. In the brain networks, regions with high
nodal centrality are usually referred as hubs.

Human Connectomics Based on Graph Theory

Using the abovementioned graph theory metrics, recent stud-
ies have consistently demonstrated that both human brain
functional and structural networks exhibit many nontrivial
topological properties such as small-worldness structure, high
efficiency of information transfer, and highly connected hub
regions located predominantly in the medial prefrontal and

Fig. 2 Illustrations of basic network metrics. As an example, we showed
a binary network with 16 nodes and 29 edges. a The length of the shortest
path between two nodes corresponds to the distance between them. Here,
the two nodes, a and b, connect to each other by three steps indicated by
the red lines. b The clustering coefficient of a node represents the extent
of local interconnectivity among its neighbors. The node labeled with
“high clustering” (red) has in total of four neighbors (yellow) that are

linked by four existing edges of six possible edges. Thus, the clustering
coefficient of the labeled node is 4/6 (i.e., 0.67). Another node labeled
with “low clustering” (red) has a clustering coefficient value of 0 because
there are no existing edges among its three neighbors (yellow). c The
nodal degree is calculated as the number of edges linking with it. The
node labeled with “high degree” (red) has a degree of seven and the node
labeled with “low degree” (pink) has a degree of 1

Fig. 1 A flowchart of construction and analysis functional and structural
brain networks used in the ADHD studies. Briefly, the time courses from
the EEG/fMRI data or the fiber pathways from diffusion MRI data are
first extracted. The brain regions were then parcellated by structurally or
functionally defined templates. The individual connectivity matrices are

generated by considering the pair-wise functional or structural associa-
tions between brain regions. To the end, the brain network is obtained and
further visualized as a graph and its topological properties can be calcu-
lated with graph theoretical approaches

Mol Neurobiol
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double-LCC interaction: LCC-non-LCC interaction:

Figure 5. Distribution of control energy in a double-chain interaction models. (a) Two chains of DC = 5 and DC = 6, where the upper
panel is a schematic of two LCCs of identical length DC = 5 interacting with each other via some random links between them. (b) Two
chains with their lengths randomly chosen from 3 to 6, where the upper panel shows the case of two interacting chains of length 5
and 3. The longer chain plays the role of LCC, while the shorter chain is a non-LCC.

only in the order-of-magnitude sense, implying that E/EDC is typically not an integer. The limits m → 0
and EDC → ∞ correspond to the rare case where all nodes in the network belong to one single LCC.

If we treat m (1 ≤ m ≤ E/EDC ) as an integer and accordingly set the integral upper bound of EDC as E,
the cumulative energy distribution function will have a similar form to equation (4.9) with only a small
difference in the constant coefficient. This would not have any significant effect on the probability density
function PE(E) in equation (4.12). Numerically, E is typically a large number in the order of at least 1010.
As a result, the numerical difference caused by the integral upper bound is negligible.

4.2. Double-chain interaction
Our analysis of the LCC-skeleton predicts power-law distribution of the required energy for practically
controllable networks, which agrees qualitatively with numerics. However, interaction energy E(2)

among the coexisting chains is ignored. In a physical system, interactions among the basic components
can play an important role in determining the system’s properties. To obtain a more accurate estimate
of the behaviours of the control energy, we need to include the interactions among the chains. The
necessity is further justified as there are discrepancies between the actual control energy and that from the
LCC-skeleton, as exemplified in figure 2b. Thus, in order to reproduce the numerically obtained energy
distributions, we must incorporate the interactions among the LCCs into the model. However, including
the interactions makes analysis difficult, as there are typically a large number of interacting pairs of
chains. To gain insight into the role played by the interactions, it is useful to focus on the relatively
simple case of two interacting chains.

Our double-chain interaction model is constructed, as follows. Consider two identical unidirectional
chains, denoted by C1 and C2, each of length DC. Every node in C1 connects with every node in C2
with probability p, all links between the two chains are unidirectional. A link points to C2 from C1 with
probability p1→2 and the probability for a link in the opposite direction is p2→1 = 1 − p1→2. By changing
the connection rate p and the directional bias p1→2, we can simulate and characterize various interaction
patterns between the two chains. To be concrete, we generate an ensemble of 10 000 interacting double-
chain networks, each with 2 · DC nodes and multiple randomized inter-chain links as determined by
the parameters p and p1→2. As shown in figure 5a, the distribution of the control energy displays a
remarkable similarity to that for random networks, in that a power-law scaling behaviour emerges
with the exponent about 1.5. The power-law distribution holds robustly with respect to variations in
the parameters p and p1→2, and the change in the magnitude of the energy due to small variations in
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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.

disordered systems | multiscale phenomena | filtering | visualization

I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is

Author contributions: M.A.S., M.B., and A.V. designed research, performed research, con-
tributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: marian.serrano@ifisc.uib-csic.es.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0808904106/DCSupplemental.

www.pnas.org / cgi / doi / 10.1073 / pnas.0808904106 PNAS April 21, 2009 vol. 106 no. 16 6483–6488

Serrano et al, PNAS (2009)



Common task: thinning

Idea: Use a local threshold

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

Extracting the multiscale backbone of complex
weighted networks
M. Ángeles Serranoa,1, Marián Boguñáb, and Alessandro Vespignanic,d

aInstituto de Física Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Científicas-Universitat Illes Balears, E-07122 Palma de Mallorca,
Spain; bDepartament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; cCenter for Complex Networks and Systems
Research, School of Informatics, Indiana University, 919 East 10th Street, Bloomington, IN 47406; and dComplex Networks Lagrange Laboratory, Institute for
Scientific Interchange, 10133 Torino, Italyb;

Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved March 2, 2009 (received for review September 9, 2008)

A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.

disordered systems | multiscale phenomena | filtering | visualization

I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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Fig. 4. Pajek representations (20) of disparity backbones. (Left) The α = 0.003 multiscale backbone of the 2006 domestic segment of the U.S. airport trans-
portation system. This disparity backbone includes entirely the top 10% of the heaviest edges. (Right) The α = 0.0008 multiscale backbone of the Florida Bay
ecosystem in the dry season. This disparity backbone includes entirely the top 40% of the heaviest edges. These disparity backbones correspond to points (b)
for the U.S. airport network and (a) for the Florida Bay food web in Table 1 and Fig. 3. The connection with maximum weight for the U.S. airport network is
Atlanta-Orlando, with value ωmax = 1, 290, 488 passengers/year and for the Florida Bay Food Web Free Bacteria to Water Flagellates with value ωmax = 12.90
mg C y−1m−2.

Conclusions
The disparity filter exploits local heterogeneity and local correla-
tions among weights to extract the network backbone by consider-
ing the relevant edges at all the scales present in the system. The
methodology preserves an edge whenever its intensity is statisti-
cally not compatible with respect to a null hypothesis of uniform
randomness for at least one of the two nodes the edge is incident
to, which ensures that small nodes in terms of strength are not
neglected. As a result, the disparity filter reduces the number of
edges in the original network significantly, keeping, at the same
time, almost all of the weight and a large fraction of nodes. As
well, this filter preserves the cutoff of the degree distribution, the
form of the weight distribution, and the clustering coefficient.

As a criticism, one could say that it only works in the case of sys-
tems with strong disorder, where the weights are heterogeneously
distributed both at the global and local level. Nevertheless, all
filters present limitations; one has to take them into account in
relation to the problem under analysis. Which strategy is the most
appropriate for a particular problem should be carefully judged
and we cannot exclude the possibility that a combination of dif-
ferent techniques turns out to be the most appropriate. Yet, the
ubiquitous presence of fluctuations and disorder spanning many
length scales uncovered in many real networks provides a wide
range of potential applications for the present methodology in
biology (metabolic networks, brain, periodically regulated genes),
information technology (Internet, World Wide Web), economics
(World Trade Web), and finance (stock markets).

Materials and Methods
Local Heterogeneity of Edges’ Weight. To assess the effect of inhomogeneities
in the weights at the local level, for each node i with k neighbors one can
calculate the function (17, 18)

ϒi(k) ≡ kYi(k) = k
∑

j

p2
ij . [3]

The function Yi(k) has been extensively used in several fields as a standard
indicator of concentration for more than half a century: in ecology (23), eco-
nomics (24, 25), physics (26), and recently in the complex networks literature
where it is known as the disparity measure (17). In all cases, Yi(k) character-
izes the level of local heterogeneity. Under perfect homogeneity, when all
the links share the same amount of the strength of the node, ϒi(k) equals 1
independently of k, while in the case of perfect heterogeneity, when just one
of the links carries the whole strength of the node, this function is ϒi(k) = k.
An intermediate behavior is usually observed in real systems with ϒi(k) ∝ kα

and the exponent close to 1/2. In this case, the weights associated with a
node are then peaked on a small number of links with the remaining connec-
tions carrying just a small fraction of the node’s strength.This is the situation

where our filter will be more useful, highlighting structures impossible to
detect using the global threshold filter. In this way, the disparity function can
be used as a preliminary indicator of the presence of local heterogeneities.

The Null Model. The probability density function of Eq. 1, along with the
joint probability distribution for two intervals given by

ρ(x, y)dxdy = (k − 1)(k − 2)(1 − x − y)k−3%(1 − x − y)dxdy , [4]

Fig. 5. Heterogeneity of weights at the local and global scales. (Top)
Sequential diagram illustrating the disparity filtering technique at the local
level. We focus on the central node in orange and its first neighborhood.
(a) Original network; (b) edges of the central node with weights that are
statistically significant heterogeneity; (c) the same for the neighbors; (d)
intersection of the colored edges in B and C that are finally selected in the
backbone. (Middle) Distribution of link’s weights spanning for six decades.
Even though this distribution does not have a clear functional form, a direct
power-law fit of the form ω−β yields an exponent β = 1.1, so with a diverging
first moment. (Bottom) Scattered plot of the disparity measure for individ-
uals airports of the U.S. airport network. The gray area corresponds to the
average plus 2 standard deviations given by the null model.
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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.

disordered systems | multiscale phenomena | filtering | visualization

I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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Fig. 4. Pajek representations (20) of disparity backbones. (Left) The α = 0.003 multiscale backbone of the 2006 domestic segment of the U.S. airport trans-
portation system. This disparity backbone includes entirely the top 10% of the heaviest edges. (Right) The α = 0.0008 multiscale backbone of the Florida Bay
ecosystem in the dry season. This disparity backbone includes entirely the top 40% of the heaviest edges. These disparity backbones correspond to points (b)
for the U.S. airport network and (a) for the Florida Bay food web in Table 1 and Fig. 3. The connection with maximum weight for the U.S. airport network is
Atlanta-Orlando, with value ωmax = 1, 290, 488 passengers/year and for the Florida Bay Food Web Free Bacteria to Water Flagellates with value ωmax = 12.90
mg C y−1m−2.

Conclusions
The disparity filter exploits local heterogeneity and local correla-
tions among weights to extract the network backbone by consider-
ing the relevant edges at all the scales present in the system. The
methodology preserves an edge whenever its intensity is statisti-
cally not compatible with respect to a null hypothesis of uniform
randomness for at least one of the two nodes the edge is incident
to, which ensures that small nodes in terms of strength are not
neglected. As a result, the disparity filter reduces the number of
edges in the original network significantly, keeping, at the same
time, almost all of the weight and a large fraction of nodes. As
well, this filter preserves the cutoff of the degree distribution, the
form of the weight distribution, and the clustering coefficient.

As a criticism, one could say that it only works in the case of sys-
tems with strong disorder, where the weights are heterogeneously
distributed both at the global and local level. Nevertheless, all
filters present limitations; one has to take them into account in
relation to the problem under analysis. Which strategy is the most
appropriate for a particular problem should be carefully judged
and we cannot exclude the possibility that a combination of dif-
ferent techniques turns out to be the most appropriate. Yet, the
ubiquitous presence of fluctuations and disorder spanning many
length scales uncovered in many real networks provides a wide
range of potential applications for the present methodology in
biology (metabolic networks, brain, periodically regulated genes),
information technology (Internet, World Wide Web), economics
(World Trade Web), and finance (stock markets).

Materials and Methods
Local Heterogeneity of Edges’ Weight. To assess the effect of inhomogeneities
in the weights at the local level, for each node i with k neighbors one can
calculate the function (17, 18)

ϒi(k) ≡ kYi(k) = k
∑

j

p2
ij . [3]

The function Yi(k) has been extensively used in several fields as a standard
indicator of concentration for more than half a century: in ecology (23), eco-
nomics (24, 25), physics (26), and recently in the complex networks literature
where it is known as the disparity measure (17). In all cases, Yi(k) character-
izes the level of local heterogeneity. Under perfect homogeneity, when all
the links share the same amount of the strength of the node, ϒi(k) equals 1
independently of k, while in the case of perfect heterogeneity, when just one
of the links carries the whole strength of the node, this function is ϒi(k) = k.
An intermediate behavior is usually observed in real systems with ϒi(k) ∝ kα

and the exponent close to 1/2. In this case, the weights associated with a
node are then peaked on a small number of links with the remaining connec-
tions carrying just a small fraction of the node’s strength.This is the situation

where our filter will be more useful, highlighting structures impossible to
detect using the global threshold filter. In this way, the disparity function can
be used as a preliminary indicator of the presence of local heterogeneities.

The Null Model. The probability density function of Eq. 1, along with the
joint probability distribution for two intervals given by

ρ(x, y)dxdy = (k − 1)(k − 2)(1 − x − y)k−3%(1 − x − y)dxdy , [4]

Fig. 5. Heterogeneity of weights at the local and global scales. (Top)
Sequential diagram illustrating the disparity filtering technique at the local
level. We focus on the central node in orange and its first neighborhood.
(a) Original network; (b) edges of the central node with weights that are
statistically significant heterogeneity; (c) the same for the neighbors; (d)
intersection of the colored edges in B and C that are finally selected in the
backbone. (Middle) Distribution of link’s weights spanning for six decades.
Even though this distribution does not have a clear functional form, a direct
power-law fit of the form ω−β yields an exponent β = 1.1, so with a diverging
first moment. (Bottom) Scattered plot of the disparity measure for individ-
uals airports of the U.S. airport network. The gray area corresponds to the
average plus 2 standard deviations given by the null model.
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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.

disordered systems | multiscale phenomena | filtering | visualization

I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.
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I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.
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I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.

disordered systems | multiscale phenomena | filtering | visualization

I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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Keep edges where:



import networkx # http://networkx.github.io 

def extract_backbone(G, weights, alpha): 
    keep_graph = networkx.Graph() 
    for i in G: 
        neighbors = G[i] 
        k = len(neighbors) 
        if k > 1: 
            W = sum( weights[i,j] for j in neighbors ) 
            for j in neighbors: 
                pij = 1.0*weights[i,j]/W 
                if (1-pij)**(k-1) < alpha: # edge significant 
                    keep_graph.add_edge( i,j ) 
    return keep_graph

Common task: thinning

Easy to implement! 
😀
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Abstract

Complex networks have recently attracted much interest due to their prevalence in nature
and our daily lives (Vespignani, 2009; Newman, 2010). A critical property of a network
is its resilience to random breakdown and failure (Albert et al., 2000; Cohen et al., 2000;
Callaway et al., 2000; Cohen et al., 2001), typically studied as a percolation problem (Stauffer
& Aharony, 1994; Achlioptas et al., 2009; Chen & D’Souza, 2011) or by modeling cascading
failures (Motter, 2004; Buldyrev et al., 2010; Brummitt, et al. 2012). Many complex systems,
from power grids and the Internet to the brain and society (Colizza et al., 2007; Vespignani,
2011; Balcan & Vespignani, 2011), can be modeled using modular networks comprised of
small, densely connected groups of nodes (Girvan & Newman, 2002). These modules often
overlap, with network elements belonging to multiple modules (Palla et al. 2005; Ahn et al.
2010). Yet existing work on robustness has not considered the role of overlapping, modular
structure. Here we study the robustness of these systems to the failure of elements. We
show analytically and empirically that it is possible for the modules themselves to become
uncoupled or non-overlapping well before the network disintegrates. If overlapping modular
organization plays a role in overall functionality, networks may be far more vulnerable than
predicted by conventional percolation theory.

Keywords: modular networks, percolation, network resilience, community structure, overlapping
communities

1 Introduction

Consider a system of interacting elements representing computers, power generators,

neurons, office workers, etc. Typically these elements fulfill individual roles in the

network such as regulating power or propagating neuronal signals. Yet in many

systems, global functionality may require elements to also perform collective tasks

Bagrow et al. (2015)
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Fig. A 1. Extracting the multiscale backbone and link communities of the fMRI brain
network. We track the fraction of nodes and links remaining in the network as a function of
the backbone threshold α. Choose α too small and little of the network remains; too big and
the density is not altered. We see a small window near 0.35 < α < 0.4 where the number of
links drops but the majority of nodes remain. We choose α = 0.37 (indicated) to exploit this.
(inset) Partition density (Ahn et al., 2010) as a function of link dendrogram threshold for the
extracted network. The vertical line denotes the threshold at which the dendrogram was cut
to determine link communities. (color online)

BOLD time series are correlated. We begin with the top 200,000 most correlated

links, measured using mutual information (Mørup et al., 2010). A single voxel had

very high degree, k = 0.73 N (the next highest degree is k = 0.096 N ) so we first

remove it. This leaves 5,038 nodes and 196,311 links.

We further preprocess this dense, weighted network by extracting its multiscale

backbone (Serrano et al., 2009). To do so, we use the Serrano algorithm (2009) with

local heterogeneity significance threshold α = 0.37. To determine this value of α we

use the following approach. The goal of the backbone extraction method is to prune

potentially spurious links by finding significant links while disconnecting few nodes

from the network. If α is too small many nodes will lose all their neighbors since few

links will be significant. Yet if α is too high few links will be pruned since most links

will appear to be significant. Therefore, we wish to choose α such that the density

of links is decreased but few nodes have been removed. In Figure A 1, we plot the

fraction of nodes and the fraction of links remaining in the graph as a function of

α. Indeed, we see a distinct window 0.35 < α < 0.39 where link removals occur but

few nodes have been lost. We choose α = 0.37, a value in the middle of this range

where many links have been removed but nearly all nodes are still present in the

network.

After extracting significant links using the backbone algorithm, the fMRI data is

reduced to a final network of 5,038 nodes and 77,680 links. For the brain network

(and all networks), link communities were extracted at the link dendrogram level of

Applied to fMRI data

Example where I used the method

Nodes

Links

If an analysis depends on a parameter, be sure 
to explore values of that parameter
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Abstract Cause-and-e�ect reasoning, the attribution of e�ects to causes, is one of the most powerful and
unique skills humans possess. Multiple surveys are mapping out causal attributions as networks, but it is
unclear how well these e�orts can be combined. Further, the total size of the collective causal attribution
network held by humans is currently unknown, making it challenging to assess the progress of these surveys.
Here we study three causal attribution networks to determine how well they can be combined into a single
network. Combining these networks requires dealing with ambiguous nodes, as nodes represent written
descriptions of causes and e�ects and di�erent descriptions may exist for the same concept. We introduce
NetFUSES, a method for combining networks with ambiguous nodes. Crucially, treating the di�erent causal
attributions networks as independent samples allows us to use their overlap to estimate the total size of the
collective causal attribution network. We find that existing surveys capture 5.77% ± 0.781% of the ⇡293 000
causes and e�ects estimated to exist, and 0.198% ± 0.174% of the ⇡10 200 000 attributed cause-e�ect
relationships.

Keywords— causality; knowledge graphs; graph alignment; natural language processing; word embeddings; capture-

recapture estimators

Causality and causal reasoning are central questions of statistics, computer science, philosophy, and the cognitive

sciences [1, 2, 3, 4]. Recently, our understanding of causality has been revolutionized by new insights and large

volumes of data [5, 6]. Large-scale data collection and surveys of large numbers of individuals are now possible

at an unprecedented scale. One class of new data enabled by the internet is very large-scale knowledge graphs,

annotated semantic networks codifying large numbers of factual statements, events, and interrelationships between

concepts [7, 8, 9]. Knowledge graphs allow generalization to new relationships using graph algorithms, and these

algorithms have been applied to causal predictions [10].

In this work we study causal relationships encoded into networks. Nodes in these networks represent causes and

e�ects, and directed links indicate cause-e�ect relationships. Generally, these relationships are gathered by large-

1

Case study: 
Nodes are ambiguous

Berenberg & Bagrow (2018)
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Figure 1: Causes and e�ects around ‘anxiety,’ a term common to all three networks studied here. This example illustrates similarities
and di�erences of these networks, in particular the sparse, treelike structure of Wikidata and ConceptNet compared with the denser
interlinking present in IPRnet.

scale surveying of individuals, often as part of larger e�orts to build general-purpose semantic networks [11, 12],

although dedicated experiments have also been conducted [13]. As these relationships are contributed by individuals

or groups of individuals, we refer to these networks as causal attribution networks. Attribution theory, the study of how

individuals perceive causality and attribute causes to e�ects, has long explored the cognitive biases that a�ect causal

attribution [14, 15, 16].

We study causal attribution networks extracted from three sources, the collaboratively constructed knowledge graph

“Wikidata”, the long-running project “ConceptNet,” and “IPRnet,” a network built by members of a crowdsourcing

platform to test a network data collection method called “Iterative Pathway Refinement” [13]. Figure 1 shows examples

from all three networks, centered on “anxiety” a term common to all three. Wikidata and ConceptNet encode other

relationships, but we focus on causal relationships. All three networks represent di�erent e�orts to explore the larger

causal attribution network, and our goal is to understand similarities and di�erence between these networks, and

whether or not they can be fruitfully combined into a single, larger network. A key challenge when combining these

data is resolving ambiguity between entities or concepts: most causes and e�ects in these networks are originally

identified only by short written descriptions, and it is possible to describe the same entity in many di�erent ways. Yet,

overcoming this challenge to fuse multiple causal attribution networks together brings multiple benefits: it provides a

common network dataset for researchers to study causality and attribution, and by measuring the overlap of di�erent

network samples we can estimate the size of the single underlying, incompletely observed causal attribution network.

The rest of this paper is organized as follows. Section 1 describes the data collection and network and text analysis

procedures, introduces a method called NetFUSES for fusing graphs with potentially ambiguous node identities, and
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scale surveying of individuals, often as part of larger e�orts to build general-purpose semantic networks [11, 12],

although dedicated experiments have also been conducted [13]. As these relationships are contributed by individuals

or groups of individuals, we refer to these networks as causal attribution networks. Attribution theory, the study of how

individuals perceive causality and attribute causes to e�ects, has long explored the cognitive biases that a�ect causal

attribution [14, 15, 16].

We study causal attribution networks extracted from three sources, the collaboratively constructed knowledge graph

“Wikidata”, the long-running project “ConceptNet,” and “IPRnet,” a network built by members of a crowdsourcing

platform to test a network data collection method called “Iterative Pathway Refinement” [13]. Figure 1 shows examples

from all three networks, centered on “anxiety” a term common to all three. Wikidata and ConceptNet encode other

relationships, but we focus on causal relationships. All three networks represent di�erent e�orts to explore the larger

causal attribution network, and our goal is to understand similarities and di�erence between these networks, and

whether or not they can be fruitfully combined into a single, larger network. A key challenge when combining these

data is resolving ambiguity between entities or concepts: most causes and e�ects in these networks are originally

identified only by short written descriptions, and it is possible to describe the same entity in many di�erent ways. Yet,

overcoming this challenge to fuse multiple causal attribution networks together brings multiple benefits: it provides a

common network dataset for researchers to study causality and attribution, and by measuring the overlap of di�erent

network samples we can estimate the size of the single underlying, incompletely observed causal attribution network.

The rest of this paper is organized as follows. Section 1 describes the data collection and network and text analysis

procedures, introduces a method called NetFUSES for fusing graphs with potentially ambiguous node identities, and
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scale surveying of individuals, often as part of larger e�orts to build general-purpose semantic networks [11, 12],

although dedicated experiments have also been conducted [13]. As these relationships are contributed by individuals

or groups of individuals, we refer to these networks as causal attribution networks. Attribution theory, the study of how

individuals perceive causality and attribute causes to e�ects, has long explored the cognitive biases that a�ect causal

attribution [14, 15, 16].

We study causal attribution networks extracted from three sources, the collaboratively constructed knowledge graph

“Wikidata”, the long-running project “ConceptNet,” and “IPRnet,” a network built by members of a crowdsourcing

platform to test a network data collection method called “Iterative Pathway Refinement” [13]. Figure 1 shows examples

from all three networks, centered on “anxiety” a term common to all three. Wikidata and ConceptNet encode other

relationships, but we focus on causal relationships. All three networks represent di�erent e�orts to explore the larger

causal attribution network, and our goal is to understand similarities and di�erence between these networks, and

whether or not they can be fruitfully combined into a single, larger network. A key challenge when combining these

data is resolving ambiguity between entities or concepts: most causes and e�ects in these networks are originally

identified only by short written descriptions, and it is possible to describe the same entity in many di�erent ways. Yet,

overcoming this challenge to fuse multiple causal attribution networks together brings multiple benefits: it provides a

common network dataset for researchers to study causality and attribution, and by measuring the overlap of di�erent

network samples we can estimate the size of the single underlying, incompletely observed causal attribution network.

The rest of this paper is organized as follows. Section 1 describes the data collection and network and text analysis

procedures, introduces a method called NetFUSES for fusing graphs with potentially ambiguous node identities, and
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scale surveying of individuals, often as part of larger e�orts to build general-purpose semantic networks [11, 12],

although dedicated experiments have also been conducted [13]. As these relationships are contributed by individuals

or groups of individuals, we refer to these networks as causal attribution networks. Attribution theory, the study of how

individuals perceive causality and attribute causes to e�ects, has long explored the cognitive biases that a�ect causal

attribution [14, 15, 16].

We study causal attribution networks extracted from three sources, the collaboratively constructed knowledge graph

“Wikidata”, the long-running project “ConceptNet,” and “IPRnet,” a network built by members of a crowdsourcing

platform to test a network data collection method called “Iterative Pathway Refinement” [13]. Figure 1 shows examples

from all three networks, centered on “anxiety” a term common to all three. Wikidata and ConceptNet encode other

relationships, but we focus on causal relationships. All three networks represent di�erent e�orts to explore the larger

causal attribution network, and our goal is to understand similarities and di�erence between these networks, and

whether or not they can be fruitfully combined into a single, larger network. A key challenge when combining these

data is resolving ambiguity between entities or concepts: most causes and e�ects in these networks are originally

identified only by short written descriptions, and it is possible to describe the same entity in many di�erent ways. Yet,

overcoming this challenge to fuse multiple causal attribution networks together brings multiple benefits: it provides a

common network dataset for researchers to study causality and attribution, and by measuring the overlap of di�erent

network samples we can estimate the size of the single underlying, incompletely observed causal attribution network.

The rest of this paper is organized as follows. Section 1 describes the data collection and network and text analysis

procedures, introduces a method called NetFUSES for fusing graphs with potentially ambiguous node identities, and
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<latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit><latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit><latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit><latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit>

Define a semantic 
similarity S between 
sentences:

S(si, sj) = S(sj , si)
<latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit><latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit><latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit><latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit>

S(si, si) = 1
<latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit><latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit><latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit><latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit>

S(si, sj)  1
<latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit><latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit><latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit><latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit>

NetFUSES: Network FUsion with SEmantic Similarity

Berenberg & Bagrow (2018)

Fuse nodes using connected components

si = "anxiety"
sj = "sleep loss"

i

j

S(si, sj) � t
<latexit sha1_base64="/mZB64wiWCgbmiszAdKuTYW+QgQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCBSmJCHoseOmxov2ANoTNdtOu3Wzi7kQptT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMCxLBNTjOt5VbWV1b38hvFra2d3b37OJ+U8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJr6rQemNI/lLYwS5kWkL3nIKQEj+Xbxpqx9fqr9uxPc7bN7DL5dcirODHiZuBkpoQx13/7q9mKaRkwCFUTrjusk4I2JAk4FmxS6qWYJoUPSZx1DJYmY9saz0yf42Cg9HMbKlAQ8U39PjEmk9SgKTGdEYKAXvan4n9dJIbz0xlwmKTBJ54vCVGCI8TQH3OOKURAjQwhV3NyK6YAoQsGkVTAhuIsvL5PmWcV1Ku71ealay+LIo0N0hMrIRReoimqojhqIokf0jF7Rm/VkvVjv1se8NWdlMwfoD6zPH5pRku8=</latexit><latexit sha1_base64="/mZB64wiWCgbmiszAdKuTYW+QgQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCBSmJCHoseOmxov2ANoTNdtOu3Wzi7kQptT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMCxLBNTjOt5VbWV1b38hvFra2d3b37OJ+U8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJr6rQemNI/lLYwS5kWkL3nIKQEj+Xbxpqx9fqr9uxPc7bN7DL5dcirODHiZuBkpoQx13/7q9mKaRkwCFUTrjusk4I2JAk4FmxS6qWYJoUPSZx1DJYmY9saz0yf42Cg9HMbKlAQ8U39PjEmk9SgKTGdEYKAXvan4n9dJIbz0xlwmKTBJ54vCVGCI8TQH3OOKURAjQwhV3NyK6YAoQsGkVTAhuIsvL5PmWcV1Ku71ealay+LIo0N0hMrIRReoimqojhqIokf0jF7Rm/VkvVjv1se8NWdlMwfoD6zPH5pRku8=</latexit><latexit sha1_base64="/mZB64wiWCgbmiszAdKuTYW+QgQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCBSmJCHoseOmxov2ANoTNdtOu3Wzi7kQptT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMCxLBNTjOt5VbWV1b38hvFra2d3b37OJ+U8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJr6rQemNI/lLYwS5kWkL3nIKQEj+Xbxpqx9fqr9uxPc7bN7DL5dcirODHiZuBkpoQx13/7q9mKaRkwCFUTrjusk4I2JAk4FmxS6qWYJoUPSZx1DJYmY9saz0yf42Cg9HMbKlAQ8U39PjEmk9SgKTGdEYKAXvan4n9dJIbz0xlwmKTBJ54vCVGCI8TQH3OOKURAjQwhV3NyK6YAoQsGkVTAhuIsvL5PmWcV1Ku71ealay+LIo0N0hMrIRReoimqojhqIokf0jF7Rm/VkvVjv1se8NWdlMwfoD6zPH5pRku8=</latexit><latexit sha1_base64="/mZB64wiWCgbmiszAdKuTYW+QgQ=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCBSmJCHoseOmxov2ANoTNdtOu3Wzi7kQptT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMCxLBNTjOt5VbWV1b38hvFra2d3b37OJ+U8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJr6rQemNI/lLYwS5kWkL3nIKQEj+Xbxpqx9fqr9uxPc7bN7DL5dcirODHiZuBkpoQx13/7q9mKaRkwCFUTrjusk4I2JAk4FmxS6qWYJoUPSZx1DJYmY9saz0yf42Cg9HMbKlAQ8U39PjEmk9SgKTGdEYKAXvan4n9dJIbz0xlwmKTBJ54vCVGCI8TQH3OOKURAjQwhV3NyK6YAoQsGkVTAhuIsvL5PmWcV1Ku71ealay+LIo0N0hMrIRReoimqojhqIokf0jF7Rm/VkvVjv1se8NWdlMwfoD6zPH5pRku8=</latexit>

i, j 2 V1 [ V2
<latexit sha1_base64="JrdmPTk7EwgxXfuqCyjV0I7QZ7M=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm8EiuJCSFEGXBTddVrAXaEKYTCft2MkkzEyEGoqv4saFIm59D3e+jdM2C239YeDjP+dwzvxhypnSjvNtrayurW9slrbK2zu7e/v2wWFbJZkktEUSnshuiBXlTNCWZprTbiopjkNOO+HoZlrvPFCpWCLu9DilfowHgkWMYG2swD5mF/fIYwK1Axd5JEsN1AK74lSdmdAyuAVUoFAzsL+8fkKymApNOFaq5zqp9nMsNSOcTspepmiKyQgPaM+gwDFVfj67foLOjNNHUSLNExrN3N8TOY6VGseh6YyxHqrF2tT8r9bLdHTt50ykmaaCzBdFGUc6QdMoUJ9JSjQfG8BEMnMrIkMsMdEmsLIJwV388jK0a1XXqbq3l5V6o4ijBCdwCufgwhXUoQFNaAGBR3iGV3iznqwX6936mLeuWMXMEfyR9fkD8QmTnA==</latexit><latexit sha1_base64="JrdmPTk7EwgxXfuqCyjV0I7QZ7M=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm8EiuJCSFEGXBTddVrAXaEKYTCft2MkkzEyEGoqv4saFIm59D3e+jdM2C239YeDjP+dwzvxhypnSjvNtrayurW9slrbK2zu7e/v2wWFbJZkktEUSnshuiBXlTNCWZprTbiopjkNOO+HoZlrvPFCpWCLu9DilfowHgkWMYG2swD5mF/fIYwK1Axd5JEsN1AK74lSdmdAyuAVUoFAzsL+8fkKymApNOFaq5zqp9nMsNSOcTspepmiKyQgPaM+gwDFVfj67foLOjNNHUSLNExrN3N8TOY6VGseh6YyxHqrF2tT8r9bLdHTt50ykmaaCzBdFGUc6QdMoUJ9JSjQfG8BEMnMrIkMsMdEmsLIJwV388jK0a1XXqbq3l5V6o4ijBCdwCufgwhXUoQFNaAGBR3iGV3iznqwX6936mLeuWMXMEfyR9fkD8QmTnA==</latexit><latexit sha1_base64="JrdmPTk7EwgxXfuqCyjV0I7QZ7M=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm8EiuJCSFEGXBTddVrAXaEKYTCft2MkkzEyEGoqv4saFIm59D3e+jdM2C239YeDjP+dwzvxhypnSjvNtrayurW9slrbK2zu7e/v2wWFbJZkktEUSnshuiBXlTNCWZprTbiopjkNOO+HoZlrvPFCpWCLu9DilfowHgkWMYG2swD5mF/fIYwK1Axd5JEsN1AK74lSdmdAyuAVUoFAzsL+8fkKymApNOFaq5zqp9nMsNSOcTspepmiKyQgPaM+gwDFVfj67foLOjNNHUSLNExrN3N8TOY6VGseh6YyxHqrF2tT8r9bLdHTt50ykmaaCzBdFGUc6QdMoUJ9JSjQfG8BEMnMrIkMsMdEmsLIJwV388jK0a1XXqbq3l5V6o4ijBCdwCufgwhXUoQFNaAGBR3iGV3iznqwX6936mLeuWMXMEfyR9fkD8QmTnA==</latexit><latexit sha1_base64="JrdmPTk7EwgxXfuqCyjV0I7QZ7M=">AAAB/XicbZDLSsNAFIZPvNZ6i5edm8EiuJCSFEGXBTddVrAXaEKYTCft2MkkzEyEGoqv4saFIm59D3e+jdM2C239YeDjP+dwzvxhypnSjvNtrayurW9slrbK2zu7e/v2wWFbJZkktEUSnshuiBXlTNCWZprTbiopjkNOO+HoZlrvPFCpWCLu9DilfowHgkWMYG2swD5mF/fIYwK1Axd5JEsN1AK74lSdmdAyuAVUoFAzsL+8fkKymApNOFaq5zqp9nMsNSOcTspepmiKyQgPaM+gwDFVfj67foLOjNNHUSLNExrN3N8TOY6VGseh6YyxHqrF2tT8r9bLdHTt50ykmaaCzBdFGUc6QdMoUJ9JSjQfG8BEMnMrIkMsMdEmsLIJwV388jK0a1XXqbq3l5V6o4ijBCdwCufgwhXUoQFNaAGBR3iGV3iznqwX6936mLeuWMXMEfyR9fkD8QmTnA==</latexit>

Threshold



edges of a fusion indicator graph:

… …

G1
<latexit sha1_base64="j/1l0AgYuGHdK64fC21BOZvKQsY=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZlNJDG3gAdzjGgekCxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZNkBRUtaCiquunu8mLBlcb4w8qtrW9sbuW3Czu7e/sHxcOjjooSSVmbRiKSPY8oJnjI2pprwXqxZCTwBOt606uF371nUvEovNOzmLkBGYfc55RoI91eD51hsYRtvATCdqVerjl1Q6rVOsYV5GRWCTK0hsX3wSiiScBCTQVRqu/gWLspkZpTweaFQaJYTOiUjFnf0JAETLnp8tQ5OjPKCPmRNBVqtFS/T6QkUGoWeKYzIHqifnsL8S+vn2j/0k15GCeahXS1yE8E0hFa/I1GXDKqxcwQQiU3tyI6IZJQbdIpmBC+PkX/k07ZdrDt3FyUGs0sjjycwCmcgwM1aEATWtAGCmN4gCd4toT1aL1Yr6vWnJXNHMMPWG+fEamNrA==</latexit><latexit sha1_base64="j/1l0AgYuGHdK64fC21BOZvKQsY=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZlNJDG3gAdzjGgekCxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZNkBRUtaCiquunu8mLBlcb4w8qtrW9sbuW3Czu7e/sHxcOjjooSSVmbRiKSPY8oJnjI2pprwXqxZCTwBOt606uF371nUvEovNOzmLkBGYfc55RoI91eD51hsYRtvATCdqVerjl1Q6rVOsYV5GRWCTK0hsX3wSiiScBCTQVRqu/gWLspkZpTweaFQaJYTOiUjFnf0JAETLnp8tQ5OjPKCPmRNBVqtFS/T6QkUGoWeKYzIHqifnsL8S+vn2j/0k15GCeahXS1yE8E0hFa/I1GXDKqxcwQQiU3tyI6IZJQbdIpmBC+PkX/k07ZdrDt3FyUGs0sjjycwCmcgwM1aEATWtAGCmN4gCd4toT1aL1Yr6vWnJXNHMMPWG+fEamNrA==</latexit><latexit sha1_base64="j/1l0AgYuGHdK64fC21BOZvKQsY=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZlNJDG3gAdzjGgekCxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZNkBRUtaCiquunu8mLBlcb4w8qtrW9sbuW3Czu7e/sHxcOjjooSSVmbRiKSPY8oJnjI2pprwXqxZCTwBOt606uF371nUvEovNOzmLkBGYfc55RoI91eD51hsYRtvATCdqVerjl1Q6rVOsYV5GRWCTK0hsX3wSiiScBCTQVRqu/gWLspkZpTweaFQaJYTOiUjFnf0JAETLnp8tQ5OjPKCPmRNBVqtFS/T6QkUGoWeKYzIHqifnsL8S+vn2j/0k15GCeahXS1yE8E0hFa/I1GXDKqxcwQQiU3tyI6IZJQbdIpmBC+PkX/k07ZdrDt3FyUGs0sjjycwCmcgwM1aEATWtAGCmN4gCd4toT1aL1Yr6vWnJXNHMMPWG+fEamNrA==</latexit><latexit sha1_base64="j/1l0AgYuGHdK64fC21BOZvKQsY=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZlNJDG3gAdzjGgekCxhdjKbDJl9MDMrhCWf4MWDIl79Im/+jZNkBRUtaCiquunu8mLBlcb4w8qtrW9sbuW3Czu7e/sHxcOjjooSSVmbRiKSPY8oJnjI2pprwXqxZCTwBOt606uF371nUvEovNOzmLkBGYfc55RoI91eD51hsYRtvATCdqVerjl1Q6rVOsYV5GRWCTK0hsX3wSiiScBCTQVRqu/gWLspkZpTweaFQaJYTOiUjFnf0JAETLnp8tQ5OjPKCPmRNBVqtFS/T6QkUGoWeKYzIHqifnsL8S+vn2j/0k15GCeahXS1yE8E0hFa/I1GXDKqxcwQQiU3tyI6IZJQbdIpmBC+PkX/k07ZdrDt3FyUGs0sjjycwCmcgwM1aEATWtAGCmN4gCd4toT1aL1Yr6vWnJXNHMMPWG+fEamNrA==</latexit>

G2
<latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit><latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit><latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit><latexit sha1_base64="jkGSFPexEZJAh31FlyZOZHNNId8=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0iqVL0VPNhjRfsBbSib7aZdutmE3Y1QQn+CFw+KePUXefPfuG0jVNEHA4/3ZpiZFyScKe26n1ZhZXVtfaO4Wdra3tnds/cPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoOxtczv/1ApWKxuNeThPoRHgoWMoK1ke5u+pW+XfYcdw7kOmfVq4pbNSRXvq0y5Gj07Y/eICZpRIUmHCvV9dxE+xmWmhFOp6VeqmiCyRgPaddQgSOq/Gx+6hSdGGWAwliaEhrN1eWJDEdKTaLAdEZYj9Rvbyb+5XVTHV76GRNJqqkgi0VhypGO0exvNGCSEs0nhmAimbkVkRGWmGiTTmk5hP9Jq+J4ruPdnpdr9TyOIhzBMZyCBxdQgzo0oAkEhvAIz/BicevJerXeFq0FK585hB+w3r8A63ONkQ==</latexit>

Define a semantic 
similarity S between 
sentences:

S(si, sj) = S(sj , si)
<latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit><latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit><latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit><latexit sha1_base64="38yOnGqUS0D0fpc0FGvDZtwmxAk=">AAACAnicbVDLSgMxFL1TX7W+Rl2Jm2ARWpAyI4JuhIKbLivaB7TDkEkzbdrMgyQjlFLc+CtuXCji1q9w59+YaWehrQcC555zLzf3eDFnUlnWt5FbWV1b38hvFra2d3b3zP2DpowSQWiDRDwSbQ9LyllIG4opTtuxoDjwOG15o5vUbz1QIVkU3qtxTJ0A90PmM4KVllzz6K4kXXaGpDsso2uUVsO0YmXXLFoVawa0TOyMFCFD3TW/ur2IJAENFeFYyo5txcqZYKEY4XRa6CaSxpiMcJ92NA1xQKUzmZ0wRada6SE/EvqFCs3U3xMTHEg5DjzdGWA1kIteKv7ndRLlXzkTFsaJoiGZL/ITjlSE0jxQjwlKFB9rgolg+q+IDLDAROnUCjoEe/HkZdI8r9hWxb69KFZrWRx5OIYTKIENl1CFGtShAQQe4Rle4c14Ml6Md+Nj3pozsplD+APj8weI/pT2</latexit>

S(si, si) = 1
<latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit><latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit><latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit><latexit sha1_base64="d1CZInhZyvpluQ0WW06y2Xrlavk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEClISEXQjFNx0WdE+oA1hMp20QyeTMDMRauiXuHGhiFs/xZ1/47TNQlsP3MvhnHuZOydIOFPacb6twtr6xuZWcbu0s7u3X7YPDtsqTiWhLRLzWHYDrChngrY005x2E0lxFHDaCca3M7/zSKVisXjQk4R6ER4KFjKCtZF8u3xfVT47R6adoRvk+nbFqTlzoFXi5qQCOZq+/dUfxCSNqNCEY6V6rpNoL8NSM8LptNRPFU0wGeMh7RkqcESVl80Pn6JTowxQGEtTQqO5+nsjw5FSkygwkxHWI7XszcT/vF6qw2svYyJJNRVk8VCYcqRjNEsBDZikRPOJIZhIZm5FZIQlJtpkVTIhuMtfXiXti5rr1Ny7y0q9kcdRhGM4gSq4cAV1aEATWkAghWd4hTfryXqx3q2PxWjByneO4A+szx/9jZFb</latexit>

S(si, sj)  1
<latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit><latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit><latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit><latexit sha1_base64="nHjJae6Zr8qVpRYDp+/SBzx7sKQ=">AAAB+3icbVBNS8NAEN34WetXrEcvi0WoICURQY8FLz1WtB/QhrDZTtq1m03c3Ygl9K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcKZ0o7zba2srq1vbBa2its7u3v79kGppeJUUmjSmMeyExAFnAloaqY5dBIJJAo4tIPR9dRvP4JULBZ3epyAF5GBYCGjRBvJt0u3FeWzM6z8+1Pc4/CAXd8uO1VnBrxM3JyUUY6Gb3/1+jFNIxCacqJU13US7WVEakY5TIq9VEFC6IgMoGuoIBEoL5vdPsEnRunjMJamhMYz9fdERiKlxlFgOiOih2rRm4r/ed1Uh1dexkSSahB0vihMOdYxngaB+0wC1XxsCKGSmVsxHRJJqDZxFU0I7uLLy6R1XnWdqntzUa7V8zgK6Agdowpy0SWqoTpqoCai6Ak9o1f0Zk2sF+vd+pi3rlj5zCH6A+vzB5VSkts=</latexit>

NetFUSES: Network FUsion with SEmantic Similarity

Berenberg & Bagrow (2018)

Fuse nodes using connected components

si = "anxiety"
sj = "sleep loss"

i

j

S(si, sj) � t
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using training data: labeled images

Measuring semantic similarity with neural networks

Example: image classification 

…, (       ,'lion'), …

Image: Jeff Clune

https://www.youtube.com/watch?v=3lp9eN5JE2A&t=1631s


using training data: labeled images

Measuring semantic similarity with neural networks

Example: image classification 

…, (       ,'lion'), …

Image: Jeff Clune

x1

x2

xn

...
yig

weights

w1

w2

wn

y = g(w>x)
<latexit sha1_base64="ZzG/s3OkXAE3yM2p/NEHPEL2IYE=">AAACCnicbVDLSsNAFJ34rPUVdelmtAh1UxIRdCMU3HRZwT6giWUynbRDJ5kwM1FDyNqNv+LGhSJu/QJ3/o2TNoK2Hhg4c8693HuPFzEqlWV9GQuLS8srq6W18vrG5ta2ubPbljwWmLQwZ1x0PSQJoyFpKaoY6UaCoMBjpOONL3O/c0uEpDy8VklE3AANQ+pTjJSW+uZBAi/gsOoESI08P73LbhzFI/jzv8+O+2bFqlkTwHliF6QCCjT75qcz4DgOSKgwQ1L2bCtSboqEopiRrOzEkkQIj9GQ9DQNUUCkm05OyeCRVgbQ50K/UMGJ+rsjRYGUSeDpynxFOevl4n9eL1b+uZvSMIoVCfF0kB8zqDjMc4EDKghWLNEEYUH1rhCPkEBY6fTKOgR79uR50j6p2VbNvjqt1BtFHCWwDw5BFdjgDNRBAzRBC2DwAJ7AC3g1Ho1n4814n5YuGEXPHvgD4+Mbu/uaUQ==</latexit><latexit sha1_base64="ZzG/s3OkXAE3yM2p/NEHPEL2IYE=">AAACCnicbVDLSsNAFJ34rPUVdelmtAh1UxIRdCMU3HRZwT6giWUynbRDJ5kwM1FDyNqNv+LGhSJu/QJ3/o2TNoK2Hhg4c8693HuPFzEqlWV9GQuLS8srq6W18vrG5ta2ubPbljwWmLQwZ1x0PSQJoyFpKaoY6UaCoMBjpOONL3O/c0uEpDy8VklE3AANQ+pTjJSW+uZBAi/gsOoESI08P73LbhzFI/jzv8+O+2bFqlkTwHliF6QCCjT75qcz4DgOSKgwQ1L2bCtSboqEopiRrOzEkkQIj9GQ9DQNUUCkm05OyeCRVgbQ50K/UMGJ+rsjRYGUSeDpynxFOevl4n9eL1b+uZvSMIoVCfF0kB8zqDjMc4EDKghWLNEEYUH1rhCPkEBY6fTKOgR79uR50j6p2VbNvjqt1BtFHCWwDw5BFdjgDNRBAzRBC2DwAJ7AC3g1Ho1n4814n5YuGEXPHvgD4+Mbu/uaUQ==</latexit><latexit sha1_base64="ZzG/s3OkXAE3yM2p/NEHPEL2IYE=">AAACCnicbVDLSsNAFJ34rPUVdelmtAh1UxIRdCMU3HRZwT6giWUynbRDJ5kwM1FDyNqNv+LGhSJu/QJ3/o2TNoK2Hhg4c8693HuPFzEqlWV9GQuLS8srq6W18vrG5ta2ubPbljwWmLQwZ1x0PSQJoyFpKaoY6UaCoMBjpOONL3O/c0uEpDy8VklE3AANQ+pTjJSW+uZBAi/gsOoESI08P73LbhzFI/jzv8+O+2bFqlkTwHliF6QCCjT75qcz4DgOSKgwQ1L2bCtSboqEopiRrOzEkkQIj9GQ9DQNUUCkm05OyeCRVgbQ50K/UMGJ+rsjRYGUSeDpynxFOevl4n9eL1b+uZvSMIoVCfF0kB8zqDjMc4EDKghWLNEEYUH1rhCPkEBY6fTKOgR79uR50j6p2VbNvjqt1BtFHCWwDw5BFdjgDNRBAzRBC2DwAJ7AC3g1Ho1n4814n5YuGEXPHvgD4+Mbu/uaUQ==</latexit><latexit sha1_base64="ZzG/s3OkXAE3yM2p/NEHPEL2IYE=">AAACCnicbVDLSsNAFJ34rPUVdelmtAh1UxIRdCMU3HRZwT6giWUynbRDJ5kwM1FDyNqNv+LGhSJu/QJ3/o2TNoK2Hhg4c8693HuPFzEqlWV9GQuLS8srq6W18vrG5ta2ubPbljwWmLQwZ1x0PSQJoyFpKaoY6UaCoMBjpOONL3O/c0uEpDy8VklE3AANQ+pTjJSW+uZBAi/gsOoESI08P73LbhzFI/jzv8+O+2bFqlkTwHliF6QCCjT75qcz4DgOSKgwQ1L2bCtSboqEopiRrOzEkkQIj9GQ9DQNUUCkm05OyeCRVgbQ50K/UMGJ+rsjRYGUSeDpynxFOevl4n9eL1b+uZvSMIoVCfF0kB8zqDjMc4EDKghWLNEEYUH1rhCPkEBY6fTKOgR79uR50j6p2VbNvjqt1BtFHCWwDw5BFdjgDNRBAzRBC2DwAJ7AC3g1Ho1n4814n5YuGEXPHvgD4+Mbu/uaUQ==</latexit>
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https://www.youtube.com/watch?v=3lp9eN5JE2A&t=1631s


using training data: labeled images What training data can we use for text?

Measuring semantic similarity with neural networks

Example: image classification 

…, (       ,'lion'), …

Image: Jeff Clune
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“You shall know a word by the company 
it keeps.” 

–JR Firth
Distributional Semantics



… worlds are yours except europa attempt no landings there …

Turn large text corpus into collection 
of word-context pairs 

“You shall know a word by the company 
it keeps.” 

–JR Firth
Distributional Semantics
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Abstract

We analyze skip-gram with negative-sampling (SGNS), a word embedding
method introduced by Mikolov et al., and show that it is implicitly factorizing
a word-context matrix, whose cells are the pointwise mutual information (PMI) of
the respective word and context pairs, shifted by a global constant. We find that
another embedding method, NCE, is implicitly factorizing a similar matrix, where
each cell is the (shifted) log conditional probability of a word given its context.
We show that using a sparse Shifted Positive PMI word-context matrix to represent
words improves results on two word similarity tasks and one of two analogy tasks.
When dense low-dimensional vectors are preferred, exact factorization with SVD
can achieve solutions that are at least as good as SGNS’s solutions for word simi-
larity tasks. On analogy questions SGNS remains superior to SVD. We conjecture
that this stems from the weighted nature of SGNS’s factorization.

1 Introduction

Most tasks in natural language processing and understanding involve looking at words, and could
benefit from word representations that do not treat individual words as unique symbols, but instead
reflect similarities and dissimilarities between them. The common paradigm for deriving such repre-
sentations is based on the distributional hypothesis of Harris [15], which states that words in similar
contexts have similar meanings. This has given rise to many word representation methods in the
NLP literature, the vast majority of whom can be described in terms of a word-context matrix M in
which each row i corresponds to a word, each column j to a context in which the word appeared, and
each matrix entry Mij corresponds to some association measure between the word and the context.
Words are then represented as rows in M or in a dimensionality-reduced matrix based on M .

Recently, there has been a surge of work proposing to represent words as dense vectors, derived using
various training methods inspired from neural-network language modeling [3, 9, 23, 21]. These
representations, referred to as “neural embeddings” or “word embeddings”, have been shown to
perform well in a variety of NLP tasks [26, 10, 1]. In particular, a sequence of papers by Mikolov and
colleagues [20, 21] culminated in the skip-gram with negative-sampling (SGNS) training method
which is both efficient to train and provides state-of-the-art results on various linguistic tasks. The
training method (as implemented in the word2vec software package) is highly popular, but not
well understood. While it is clear that the training objective follows the distributional hypothesis
– by trying to maximize the dot-product between the vectors of frequently occurring word-context
pairs, and minimize it for random word-context pairs – very little is known about the quantity being
optimized by the algorithm, or the reason it is expected to produce good word representations.

In this work, we aim to broaden the theoretical understanding of neural-inspired word embeddings.
Specifically, we cast SGNS’s training method as weighted matrix factorization, and show that its
objective is implicitly factorizing a shifted PMI matrix – the well-known word-context PMI matrix
from the word-similarity literature, shifted by a constant offset. A similar result holds also for the

1

If this sounds like SVD, 
you're not crazy….

M = U⌃V >
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Embedding words in vector spaces 
has taken the world by storm

Lots of natural language processing applications 
including semantic similarity:

S(si, sj) =
vi · vj

kvikkvjk
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COGNITIVE SCIENCE

Semantics derived automatically
from language corpora contain
human-like biases
Aylin Caliskan,1* Joanna J. Bryson,1,2* Arvind Narayanan1*

Machine learning is a means to derive artificial intelligence by discovering patterns in
existing data. Here, we show that applying machine learning to ordinary human language
results in human-like semantic biases. We replicated a spectrum of known biases, as
measured by the Implicit Association Test, using a widely used, purely statistical
machine-learning model trained on a standard corpus of text from the World Wide Web.
Our results indicate that text corpora contain recoverable and accurate imprints of our
historic biases, whether morally neutral as toward insects or flowers, problematic as
toward race or gender, or even simply veridical, reflecting the status quo distribution of
gender with respect to careers or first names. Our methods hold promise for identifying
and addressing sources of bias in culture, including technology.

W
e show that standard machine learning
can acquire stereotyped biases from tex-
tual data that reflect everyday human cul-
ture. The general idea that text corpora
capture semantics, including cultural

stereotypes and empirical associations, has long
been known in corpus linguistics (1, 2), but our
findings add to this knowledge in three ways.
First, we used word embeddings (3), a powerful
tool to extract associations captured in text cor-
pora; this method substantially amplifies the sig-
nal found in raw statistics. Second, our replication
of documented human biases may yield tools and
insights for studying prejudicial attitudes and
behavior in humans. Third, since we performed
our experiments on off-the-shelf machine learn-
ing components [primarily the Global Vectors for
WordRepresentation (GloVe)word embedding],we
show that cultural stereotypes propagate to artificial
intelligence (AI) technologies in widespread use.
Before presenting our results, we discuss key

terms and describe the tools we use. Terminology
varies by discipline; these definitions are intended
for clarity of the present article. In AI and ma-
chine learning, bias refers generally to prior infor-
mation, a necessary prerequisite for intelligent
action (4). Yet bias can be problematic where such
information is derived from aspects of human
culture known to lead to harmful behavior. Here,
we will call such biases “stereotyped” and actions
taken on their basis “prejudiced.”
We used the Implicit Association Test (IAT) as

our primary source of documented human biases
(5). The IAT demonstrates enormous differences in

response times when subjects are asked to pair
two concepts they find similar, in contrast to two
concepts they find different. We developed our
first method, the Word-Embedding Association
Test (WEAT), a statistical test analogous to the
IAT, and applied it to a widely used semantic rep-
resentationofwords inAI, termedwordembeddings.
Wordembeddings represent eachword as a vector
in a vector space of about 300 dimensions, based
on the textual context in which the word is found.
We used the distance between a pair of vectors
(more precisely, their cosine similarity score, a
measure of correlation) as analogous to reaction
time in the IAT. The WEAT compares these vec-
tors for the same set of words used by the IAT.We
describe the WEAT in more detail below.
Most closely related to this paper is concurrent

work by Bolukbasi et al. (6), who propose ameth-
od to “debias” word embeddings. Our work is
complementary, as we focus instead on rigorously
demonstrating human-like biases inword embed-
dings. Further, our methods do not require an al-
gebraic formulation of bias, which may not be
possible forall types of bias.Additionally,we studied
the relationship between stereotyped associations
andempirical data concerningcontemporary society.
Using the measure of semantic association de-

scribed above, we have been able to replicate every
stereotype that we tested. We selected IATs that
studied general societal attitudes, rather than those
of subpopulations, and for which lists of target and
attribute words (rather than images) were avail-
able. The results are summarized in Table 1.
Greenwald et al. introduced and validated the

IAT by studying biases that they consider nearly
universal in humans and about which there is no
social concern (5). We began by replicating these
inoffensive results for the same purposes. Spe-
cifically, they demonstrated that flowers are sig-
nificantly more pleasant than insects, based on

the reaction latencies of four pairings (flowers +
pleasant, insects +unpleasant, flowers+unpleasant,
and insects + pleasant). Greenwald et al. measured
effect size in terms of Cohen’s d, which is the
difference between twomeans of log-transformed
latencies in milliseconds, divided by the standard
deviation. Conventional small, medium, and large
values of d are 0.2, 0.5, and 0.8, respectively. With
32 participants, the IAT comparing flowers and
insects resulted in an effect size of 1.35 (P < 10−8).
Applying our method, we observed the same
expected association with an effect size of 1.50
(P< 10−7). Similarly, we replicatedGreenwald et al.’s
finding (5) that musical instruments are signifi-
cantly more pleasant than weapons (see Table 1).
Notice that the word embeddings “know” these

properties of flowers, insects, musical instruments,
and weapons with no direct experience of the
world and no representation of semantics other
than the implicit metrics of words’ co-occurrence
statistics with other nearby words.
We then used the same technique to demon-

strate thatmachine learning absorbs stereotyped
biases as easily as any other. Greenwald et al. (5)
found extreme effects of race as indicated simply
by name. A bundle of names associated with being
European American was found to be significantly
more easily associated with pleasant than unpleas-
ant terms, compared with a bundle of African-
American names.
In replicating this result, we were forced to

slightly alter the stimuli because some of the
original African-American names did not occur
in the corpus with sufficient frequency to be in-
cluded.We therefore also deleted the same number
of European-American names, chosen at random,
to balance the number of elements in the sets of
two concepts. Omissions and deletions are indi-
cated in our list of keywords (see the supplemen-
tary materials).
In another widely publicized study, Bertrand

and Mullainathan (7) sent nearly 5000 identical
résumés in response to 1300 job advertisements,
varying only the names of the candidates. They
found that European-American candidates were
50%more likely to be offered an opportunity to be
interviewed. In follow-up work, they argued that
implicit biases help account for these effects (8).
We provide additional evidence for this hypo-

thesisusingwordembeddings.We tested thenames
in their study for pleasantness associations. As
before,wehad todelete some low-frequencynames.
We confirmed the association using two different
sets of “pleasant/unpleasant” stimuli: those from
the original IAT paper and also a shorter, revised
set published later (9).
Turning to gender biases, we replicated a find-

ing that female names are more associated with
family than career words, compared with male
names (9). This IAT was conducted online and
thus has a vastly larger subject pool but far fewer
keywords.We replicated the IAT results evenwith
these reduced keyword sets.We also replicated an
online IAT finding that femalewords (e.g., “woman”
and “girl”) are more associated than male words
with the arts thanwithmathematics (9). Finally,
we replicated a laboratory study showing that
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Semantics derived automatically
from language corpora contain
human-like biases
Aylin Caliskan,1* Joanna J. Bryson,1,2* Arvind Narayanan1*

Machine learning is a means to derive artificial intelligence by discovering patterns in
existing data. Here, we show that applying machine learning to ordinary human language
results in human-like semantic biases. We replicated a spectrum of known biases, as
measured by the Implicit Association Test, using a widely used, purely statistical
machine-learning model trained on a standard corpus of text from the World Wide Web.
Our results indicate that text corpora contain recoverable and accurate imprints of our
historic biases, whether morally neutral as toward insects or flowers, problematic as
toward race or gender, or even simply veridical, reflecting the status quo distribution of
gender with respect to careers or first names. Our methods hold promise for identifying
and addressing sources of bias in culture, including technology.

W
e show that standard machine learning
can acquire stereotyped biases from tex-
tual data that reflect everyday human cul-
ture. The general idea that text corpora
capture semantics, including cultural

stereotypes and empirical associations, has long
been known in corpus linguistics (1, 2), but our
findings add to this knowledge in three ways.
First, we used word embeddings (3), a powerful
tool to extract associations captured in text cor-
pora; this method substantially amplifies the sig-
nal found in raw statistics. Second, our replication
of documented human biases may yield tools and
insights for studying prejudicial attitudes and
behavior in humans. Third, since we performed
our experiments on off-the-shelf machine learn-
ing components [primarily the Global Vectors for
WordRepresentation (GloVe)word embedding],we
show that cultural stereotypes propagate to artificial
intelligence (AI) technologies in widespread use.
Before presenting our results, we discuss key

terms and describe the tools we use. Terminology
varies by discipline; these definitions are intended
for clarity of the present article. In AI and ma-
chine learning, bias refers generally to prior infor-
mation, a necessary prerequisite for intelligent
action (4). Yet bias can be problematic where such
information is derived from aspects of human
culture known to lead to harmful behavior. Here,
we will call such biases “stereotyped” and actions
taken on their basis “prejudiced.”
We used the Implicit Association Test (IAT) as

our primary source of documented human biases
(5). The IAT demonstrates enormous differences in

response times when subjects are asked to pair
two concepts they find similar, in contrast to two
concepts they find different. We developed our
first method, the Word-Embedding Association
Test (WEAT), a statistical test analogous to the
IAT, and applied it to a widely used semantic rep-
resentationofwords inAI, termedwordembeddings.
Wordembeddings represent eachword as a vector
in a vector space of about 300 dimensions, based
on the textual context in which the word is found.
We used the distance between a pair of vectors
(more precisely, their cosine similarity score, a
measure of correlation) as analogous to reaction
time in the IAT. The WEAT compares these vec-
tors for the same set of words used by the IAT.We
describe the WEAT in more detail below.
Most closely related to this paper is concurrent

work by Bolukbasi et al. (6), who propose ameth-
od to “debias” word embeddings. Our work is
complementary, as we focus instead on rigorously
demonstrating human-like biases inword embed-
dings. Further, our methods do not require an al-
gebraic formulation of bias, which may not be
possible forall types of bias.Additionally,we studied
the relationship between stereotyped associations
andempirical data concerningcontemporary society.
Using the measure of semantic association de-

scribed above, we have been able to replicate every
stereotype that we tested. We selected IATs that
studied general societal attitudes, rather than those
of subpopulations, and for which lists of target and
attribute words (rather than images) were avail-
able. The results are summarized in Table 1.
Greenwald et al. introduced and validated the

IAT by studying biases that they consider nearly
universal in humans and about which there is no
social concern (5). We began by replicating these
inoffensive results for the same purposes. Spe-
cifically, they demonstrated that flowers are sig-
nificantly more pleasant than insects, based on

the reaction latencies of four pairings (flowers +
pleasant, insects +unpleasant, flowers+unpleasant,
and insects + pleasant). Greenwald et al. measured
effect size in terms of Cohen’s d, which is the
difference between twomeans of log-transformed
latencies in milliseconds, divided by the standard
deviation. Conventional small, medium, and large
values of d are 0.2, 0.5, and 0.8, respectively. With
32 participants, the IAT comparing flowers and
insects resulted in an effect size of 1.35 (P < 10−8).
Applying our method, we observed the same
expected association with an effect size of 1.50
(P< 10−7). Similarly, we replicatedGreenwald et al.’s
finding (5) that musical instruments are signifi-
cantly more pleasant than weapons (see Table 1).
Notice that the word embeddings “know” these

properties of flowers, insects, musical instruments,
and weapons with no direct experience of the
world and no representation of semantics other
than the implicit metrics of words’ co-occurrence
statistics with other nearby words.
We then used the same technique to demon-

strate thatmachine learning absorbs stereotyped
biases as easily as any other. Greenwald et al. (5)
found extreme effects of race as indicated simply
by name. A bundle of names associated with being
European American was found to be significantly
more easily associated with pleasant than unpleas-
ant terms, compared with a bundle of African-
American names.
In replicating this result, we were forced to

slightly alter the stimuli because some of the
original African-American names did not occur
in the corpus with sufficient frequency to be in-
cluded.We therefore also deleted the same number
of European-American names, chosen at random,
to balance the number of elements in the sets of
two concepts. Omissions and deletions are indi-
cated in our list of keywords (see the supplemen-
tary materials).
In another widely publicized study, Bertrand

and Mullainathan (7) sent nearly 5000 identical
résumés in response to 1300 job advertisements,
varying only the names of the candidates. They
found that European-American candidates were
50%more likely to be offered an opportunity to be
interviewed. In follow-up work, they argued that
implicit biases help account for these effects (8).
We provide additional evidence for this hypo-

thesisusingwordembeddings.We tested thenames
in their study for pleasantness associations. As
before,wehad todelete some low-frequencynames.
We confirmed the association using two different
sets of “pleasant/unpleasant” stimuli: those from
the original IAT paper and also a shorter, revised
set published later (9).
Turning to gender biases, we replicated a find-

ing that female names are more associated with
family than career words, compared with male
names (9). This IAT was conducted online and
thus has a vastly larger subject pool but far fewer
keywords.We replicated the IAT results evenwith
these reduced keyword sets.We also replicated an
online IAT finding that femalewords (e.g., “woman”
and “girl”) are more associated than male words
with the arts thanwithmathematics (9). Finally,
we replicated a laboratory study showing that
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Neural language representations predict outcomes of scientific

research
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Abstract Many research fields codify their findings in standard formats, often by reporting correlations
between quantities of interest. But the space of all testable correlates is far larger than scientific resources
can currently address, so the ability to accurately predict correlations would be useful to plan research and
allocate resources. Using a dataset of approximately 170,000 correlational findings extracted from leading
social science journals, we show that a trained neural network can accurately predict the reported correlations
using only the text descriptions of the correlates. Accurate predictive models such as these can guide scientists
towards promising untested correlates, better quantify the information gained from new findings, and has
implications for moving artificial intelligence systems from predicting structures to predicting relationships in
the real world.

1 Introduction

One of the most important applications of machine learning is its ability to replace data that are di�cult, expensive or

dangerous to collect with predictions generated using more amenable, economical or ethical data. Examples of this

include replacing unavailable socioeconomic indicators for regions that are di�cult to survey with predictions made

from satellite imagery [1], predicting pneumonia mortality and hospital readmission [2, 3], inferring cancer risk from

medical imagery or histology results [4, 5, 6]. Predictions learned from data can also guide the scientific discovery

process. Some examples include predicting novel chemical reactions from previously collected experimental data [7],

classifying quasar candidates and estimating stellar parameters from photometric data [8, 9], or particle discovery from

high-energy physics experiments [10].

Correlational findings underpin significant portions of the scientific enterprise, and inform statistical methods, study

design and meta-analyses [11]. Reported correlations are often the primary outcome of an experimental or empirical

study and capture a field’s ability to measure and explain the relationships they study. Findings are often presented

1
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Abstract

This paper describes Luminoso’s partici-

pation in SemEval 2017 Task 2, “Multi-

lingual and Cross-lingual Semantic Word

Similarity”, with a system based on Con-

ceptNet. ConceptNet is an open, multilin-

gual knowledge graph that focuses on gen-

eral knowledge that relates the meanings

of words and phrases. Our submission to

SemEval was an update of previous work

that builds high-quality, multilingual word

embeddings from a combination of Con-

ceptNet and distributional semantics. Our

system took first place in both subtasks. It

ranked first in 4 out of 5 of the separate

languages, and also ranked first in all 10

of the cross-lingual language pairs.

1 Introduction

ConceptNet 5 (Speer and Havasi, 2013) is a mul-

tilingual, domain-general knowledge graph that

connects words and phrases of natural language

(terms) with labeled, weighted edges. Compared

to other knowledge graphs, it avoids trying to

be a large gazetteer of named entities. It aims

most of all to cover the frequently-used words

and phrases of every language, and to represent

generally-known relationships between the mean-

ings of these terms.

The paper describing ConceptNet 5.5

(Speer et al., 2017) showed that it could be

used in combination with sources of distributional

semantics, particularly the word2vec Google

News skip-gram embeddings (Mikolov et al.,

2013) and GloVe 1.2 (Pennington et al., 2014),

to produce new embeddings with state-of-the-art

performance across many word-relatedness eval-

uations. The three data sources are combined

using an extension of the technique known as

retrofitting (Faruqui et al., 2015). The result is

a system of pre-computed word embeddings we

call “ConceptNet Numberbatch”.

The system we submitted to SemEval-2017

Task 2, “Multilingual and Cross-lingual Semantic

Word Similarity”, is an update of that system, co-

inciding with the release of version 5.5.3 of Con-

ceptNet1. We added multiple fallback methods for

assigning vectors to out-of-vocabulary words. We

also experimented with, but did not submit, sys-

tems that used additional sources of word embed-

dings in the five languages of this SemEval task.

This task (Camacho-Collados et al., 2017) eval-

uated systems at their ability to rank pairs of words

by their semantic similarity or relatedness. The

words are in five languages: English, German,

Italian, Spanish, and Farsi. Subtask 1 compares

pairs of words within each of the five languages;

subtask 2 compares pairs of words that are in dif-

ferent languages, for each of the ten pairs of dis-

tinct languages.

Our system took first place in both subtasks.

Detailed results for our system appear in Sec-

tion 3.4.

2 Implementation

The way we built our embeddings is based on

retrofitting (Faruqui et al., 2015), and in partic-

ular, the elaboration of it we call “expanded

retrofitting” (Speer et al., 2017). Retrofitting, as

originally described, adjusts the values of exist-

ing word embeddings based on a new objective

function that also takes a knowledge graph into ac-

count. Its output has the same vocabulary as its

input. In expanded retrofitting, on the other hand,

terms that are only present in the knowledge graph

are added to the vocabulary and are also assigned

1Data and code are available at
http://conceptnet.io.
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ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-
Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F1 scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-
Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of e�cient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c�The authors, 2014. This is the author’s draft of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in KDD’14, http://dx.doi.org/10.1145/2623330.
2623732

(a) Input: Karate Graph (b) Output: Representation

Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.
In this paper we introduce deep learning (unsupervised

feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).
To demonstrate DeepWalk’s potential in real world sce-
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prediction [22]) must be able to deal with this sparsity in
order to survive.
In this paper we introduce deep learning (unsupervised

feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).
To demonstrate DeepWalk’s potential in real world sce-
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ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-
Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F1 scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-
Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of e�cient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c�The authors, 2014. This is the author’s draft of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in KDD’14, http://dx.doi.org/10.1145/2623330.
2623732
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(a) Input: Karate Graph (b) Output: Representation

Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.
In this paper we introduce deep learning (unsupervised

feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).
To demonstrate DeepWalk’s potential in real world sce-
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Is it also a matrix 
factorization problem? Yes!
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ABSTRACT
Since the invention of word2vec [28, 29], the skip-gram model
has signi�cantly advanced the research of network embedding,
such as the recent emergence of the DeepWalk, LINE, PTE, and
node2vec approaches. In this work, we show that all of the afore-
mentioned models with negative sampling can be uni�ed into the
matrix factorization framework with closed forms. Our analysis
and proofs reveal that: (1) DeepWalk [31] empirically produces a
low-rank transformation of a network’s normalized Laplacian ma-
trix; (2) LINE [37], in theory, is a special case of DeepWalk when the
size of vertices’ context is set to one; (3) As an extension of LINE,
PTE [36] can be viewed as the joint factorization of multiple net-
works’ Laplacians; (4) node2vec [16] is factorizing a matrix related
to the stationary distribution and transition probability tensor of
a 2nd-order random walk. We further provide the theoretical con-
nections between skip-gram based network embedding algorithms
and the theory of graph Laplacian. Finally, we present the NetMF
method1 as well as its approximation algorithm for computing net-
work embedding. Our method o�ers signi�cant improvements over
DeepWalk and LINE for conventional network mining tasks. This
work lays the theoretical foundation for skip-gram based network
embedding methods, leading to a better understanding of latent
network representation learning.
ACM Reference Format:
Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
2018. Network Embedding as Matrix Factorization: Unifying DeepWalk,
LINE, PTE, and node2vec . In Proceedings of WSDM’18. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3159652.3159706

1 INTRODUCTION
The conventional paradigm of mining and learning with networks
usually starts from the explicit exploration of their structural prop-
erties [13, 32]. But many of such properties, such as betweenness
∗This work was partially done when Jiezhong was an intern at Microsoft Research.
1Code available at github.com/xptree/NetMF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM’18, , February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159706

Table 1: The matrices that are implicitly approximated and
factorized by DeepWalk, LINE, PTE, and node2vec.

Algorithm Matrix
DeepWalk log

⇣
vol(G)

⇣
1
T

ÕT
r=1(D�1A)r

⌘
D�1

⌘
� logb

LINE log
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vol(G)D�1AD�1� � logb

PTE log
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´

266664
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377775
™ÆÆ
¨
� logb

node2vec log

 
1
2T
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r=1

⇣Õ
u Xw,u P rc,w,u+

Õ
u Xc,u P rw,c,u

⌘
(Õu Xw,u )(Õu Xc,u )

!
� logb

Notations in DeepWalk and LINE are introduced below. See detailed notations for PTE and
node2vec in Section 2.
A:A 2 R|V |⇥|V |

+ isG ’s adjacency matrix withAi, j as the edge weight between vertices i and j ;
Dcol: Dcol = diag(A>e) is the diagonal matrix with column sum ofA;
Drow: Drow = diag(Ae) is the diagonal matrix with row sum ofA;
D : For undirected graphs (A> = A), Dcol = Drow. For brevity, D represents both Dcol & Drow.

D = diag(d1, · · · , d |V | ), where di represents generalized degree of vertex i ;
vol(G): vol(G) = Õ

i
Õ
j Ai, j =

Õ
i di is the volume of a weighted graphG ;

T & b : The context window size and the number of negative sampling in skip-gram, respectively.

centrality, triangle count, and modularity, require extensive do-
main knowledge and expensive computation to handcraft. In light
of these issues, as well as the opportunities o�ered by the recent
emergence of representation learning [2], learning latent repre-
sentations for networks, a.k.a., network embedding, has been ex-
tensively studied in order to automatically discover and map a
network’s structural properties into a latent space.

Formally, the problem of network embedding is often formalized
as follows: Given an undirected and weighted graph G = (V ,E,A)
with V as the node set, E as the edge set and A as the adjacency
matrix, the goal is to learn a functionV ! Rd that maps each vertex
to a d-dimensional (d ⌧ |V |) vector that captures its structural
properties. The output representations can be used as the input of
mining and learning algorithms for a variety of network science
tasks, such as label classi�cation and community detection.

The attempt to address this problem can date back to spectral
graph theory [11] and social dimension learning [38]. Its very recent
advances have been largely in�uenced by the skip-gram model
originally proposed for word embedding [28, 29], whose input
is a text corpus composed of sentences in natural language and
output is the latent vector representation for each word in the
corpus. Notably, inspired by this setting, DeepWalk [31] pioneers
network embedding by considering the vertex paths traversed by
random walks over networks as the sentences and leveraging skip-
gram for learning latent vertex representations. With the advent of
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of these issues, as well as the opportunities o�ered by the recent
emergence of representation learning [2], learning latent repre-
sentations for networks, a.k.a., network embedding, has been ex-
tensively studied in order to automatically discover and map a
network’s structural properties into a latent space.

Formally, the problem of network embedding is often formalized
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matrix, the goal is to learn a functionV ! Rd that maps each vertex
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The attempt to address this problem can date back to spectral
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advances have been largely in�uenced by the skip-gram model
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is a text corpus composed of sentences in natural language and
output is the latent vector representation for each word in the
corpus. Notably, inspired by this setting, DeepWalk [31] pioneers
network embedding by considering the vertex paths traversed by
random walks over networks as the sentences and leveraging skip-
gram for learning latent vertex representations. With the advent of

ar
X

iv
:1

71
0.

02
97

1v
4 

 [c
s.S

I] 
 8

 F
eb

 2
01

8

Network Embedding as Matrix Factorization: Unifying
DeepWalk, LINE, PTE, and node2vec

Jiezhong Qiu†⇤, Yuxiao Dong‡, Hao Ma‡, Jian Li], Kuansan Wang‡, and Jie Tang†

†Department of Computer Science and Technology, Tsinghua University
‡Microsoft Research, Redmond

]Institute for Interdisciplinary Information Sciences, Tsinghua University
qiujz16@mails.tsinghua.edu.cn,{yuxdong,haoma,kuansanw}@microsoft.com,{lijian83,jietang}@tsinghua.edu.cn

ABSTRACT
Since the invention of word2vec [28, 29], the skip-gram model
has signi�cantly advanced the research of network embedding,
such as the recent emergence of the DeepWalk, LINE, PTE, and
node2vec approaches. In this work, we show that all of the afore-
mentioned models with negative sampling can be uni�ed into the
matrix factorization framework with closed forms. Our analysis
and proofs reveal that: (1) DeepWalk [31] empirically produces a
low-rank transformation of a network’s normalized Laplacian ma-
trix; (2) LINE [37], in theory, is a special case of DeepWalk when the
size of vertices’ context is set to one; (3) As an extension of LINE,
PTE [36] can be viewed as the joint factorization of multiple net-
works’ Laplacians; (4) node2vec [16] is factorizing a matrix related
to the stationary distribution and transition probability tensor of
a 2nd-order random walk. We further provide the theoretical con-
nections between skip-gram based network embedding algorithms
and the theory of graph Laplacian. Finally, we present the NetMF
method1 as well as its approximation algorithm for computing net-
work embedding. Our method o�ers signi�cant improvements over
DeepWalk and LINE for conventional network mining tasks. This
work lays the theoretical foundation for skip-gram based network
embedding methods, leading to a better understanding of latent
network representation learning.
ACM Reference Format:
Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
2018. Network Embedding as Matrix Factorization: Unifying DeepWalk,
LINE, PTE, and node2vec . In Proceedings of WSDM’18. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3159652.3159706

1 INTRODUCTION
The conventional paradigm of mining and learning with networks
usually starts from the explicit exploration of their structural prop-
erties [13, 32]. But many of such properties, such as betweenness
∗This work was partially done when Jiezhong was an intern at Microsoft Research.
1Code available at github.com/xptree/NetMF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM’18, , February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159706

Table 1: The matrices that are implicitly approximated and
factorized by DeepWalk, LINE, PTE, and node2vec.

Algorithm Matrix
DeepWalk log

⇣
vol(G)

⇣
1
T

ÕT
r=1(D�1A)r

⌘
D�1

⌘
� logb

LINE log
�
vol(G)D�1AD�1� � logb

PTE log
©≠≠
´

266664
� vol(Gww)(Dww

row)�1Aww(Dww
col )

�1

� vol(Gdw)(Ddw
row)�1Adw(Ddw

col )
�1

� vol(Glw)(D lw
row)�1Alw(D lw

col)
�1

377775
™ÆÆ
¨
� logb

node2vec log

 
1
2T

ÕT
r=1

⇣Õ
u Xw,u P rc,w,u+

Õ
u Xc,u P rw,c,u

⌘
(Õu Xw,u )(Õu Xc,u )

!
� logb

Notations in DeepWalk and LINE are introduced below. See detailed notations for PTE and
node2vec in Section 2.
A:A 2 R|V |⇥|V |

+ isG ’s adjacency matrix withAi, j as the edge weight between vertices i and j ;
Dcol: Dcol = diag(A>e) is the diagonal matrix with column sum ofA;
Drow: Drow = diag(Ae) is the diagonal matrix with row sum ofA;
D : For undirected graphs (A> = A), Dcol = Drow. For brevity, D represents both Dcol & Drow.

D = diag(d1, · · · , d |V | ), where di represents generalized degree of vertex i ;
vol(G): vol(G) = Õ

i
Õ
j Ai, j =

Õ
i di is the volume of a weighted graphG ;

T & b : The context window size and the number of negative sampling in skip-gram, respectively.

centrality, triangle count, and modularity, require extensive do-
main knowledge and expensive computation to handcraft. In light
of these issues, as well as the opportunities o�ered by the recent
emergence of representation learning [2], learning latent repre-
sentations for networks, a.k.a., network embedding, has been ex-
tensively studied in order to automatically discover and map a
network’s structural properties into a latent space.

Formally, the problem of network embedding is often formalized
as follows: Given an undirected and weighted graph G = (V ,E,A)
with V as the node set, E as the edge set and A as the adjacency
matrix, the goal is to learn a functionV ! Rd that maps each vertex
to a d-dimensional (d ⌧ |V |) vector that captures its structural
properties. The output representations can be used as the input of
mining and learning algorithms for a variety of network science
tasks, such as label classi�cation and community detection.

The attempt to address this problem can date back to spectral
graph theory [11] and social dimension learning [38]. Its very recent
advances have been largely in�uenced by the skip-gram model
originally proposed for word embedding [28, 29], whose input
is a text corpus composed of sentences in natural language and
output is the latent vector representation for each word in the
corpus. Notably, inspired by this setting, DeepWalk [31] pioneers
network embedding by considering the vertex paths traversed by
random walks over networks as the sentences and leveraging skip-
gram for learning latent vertex representations. With the advent of
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1. Introduction

Random walks (RWs) are popular models of stochastic processes with a very rich history [1–5].1 The term ‘‘random
walk’’ was coined by Karl Pearson [6], and the study of RWs dates back to the ‘‘Gambler’s Ruin’’ problem analyzed by
Pascal, Fermat, Huygens, Bernoulli, and others [7]. Additionally, Albert Einstein formulated stochastic motion (in the form
of ‘‘Brownian motion’’) of particles in continuous time due to their collisions with atoms and molecules [8]. Theoretical
developments have involved mathematics (especially probability theory), computer science, statistical physics, operations
research, and more. RW models have also been applied in various domains, ranging from locomotion and foraging of
animals [9–12], the dynamics of neuronal firing [13,14] and decision-making in the brain [15,16] to population genetics [17],
polymer chains [18,19], descriptions of financial markets [20,21], evolution of research interests (through RWs on problem
space) [22], ranking systems [23], dimension reduction and feature extraction from high-dimensional data (e.g., in the form
of ‘‘diffusion maps’’) [24,25], and even sports statistics [26,27]. RW theory can also help predict arrival times of diseases
spreading on networks [28]. There exist severalmonographs and review papers on RWs.Many of them treat RWs on classical
network topologies, such as regular lattices (e.g., Zd) and Cayley trees (i.e., trees in which each node has the same number
of neighboring nodes, which we henceforth call the node ‘‘degree’’) [4,29–35]. Other monographs and surveys focus on RWs
on fractal structures, revealing diffusion properties that are ‘‘anomalous’’ compared to RWs on regular lattices or Euclidean
spaces (i.e., Rd) [32,36–40]. Other literature treats RWs on finite networks, which are equivalent to a finite Markov chain (in
the discrete-time case) [1,32,41,42] and are at the core of several stochastic algorithms.

In parallel, ‘‘network science’’ has emerged in recent years as a central approach to the study of complex systems
[43–46]. Networks are a natural representation of systems composed of interacting elements and allow one to examine the
impact of structure on the dynamics and function of a system (as well as the impact of dynamics and function on network
structure). Examples include friendship networks, international relationships, gene-regulatory networks, food webs, airport
networks, the internet, andmyriadmore. In each case, one can represent the system’s connectivity structure as a set of nodes
(representing the entities in the system) and edges (representing interactions among those entities). The study of networks
is highly interdisciplinary, and it integrates theoretical and computational tools from subjects such as applied mathematics,
statistical physics, computer science, engineering, sociology, economics, biology, and other domains. Many networks exhibit
complex yet regular patterns that are explainable (sometimes arguably) by simple mechanisms. Network science has also
had a strong impact on the understanding of dynamical processes because of the critical role of structure on spreading
processes, synchronization, and others [47–49]. As with RWs, numerous books and review papers have been written on
networks, including textbooks [44,45,50–52], general review articles [46,53], and more specialized reviews on topics such

1 See https://www.youtube.com/watch?v=stgYW6M5o4k for an introduction to random walks for a public audience from the U.S. Public Broadcasting
Service (PBS).
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processes; can be used to model numerous phenomena, including diffusion, interactions,
and opinions among humans and animals; and can be used to extract information about
important entities or dense groups of entities in a network. Random walks have been
studied for many decades on both regular lattices and (especially in the last couple of
decades) on networks with a variety of structures. In the present article, we survey the
theory and applications of random walks on networks, restricting ourselves to simple
cases of single and non-adaptive random walkers. We distinguish three main types of
randomwalks: discrete-time randomwalks, node-centric continuous-time randomwalks,
and edge-centric continuous-time randomwalks. We first briefly survey randomwalks on
a line, and then we consider random walks on various types of networks. We extensively
discuss applications of randomwalks, including ranking of nodes (e.g., PageRank), commu-
nity detection, respondent-driven sampling, and opinion models such as voter models.
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1. Introduction

Random walks (RWs) are popular models of stochastic processes with a very rich history [1–5].1 The term ‘‘random
walk’’ was coined by Karl Pearson [6], and the study of RWs dates back to the ‘‘Gambler’s Ruin’’ problem analyzed by
Pascal, Fermat, Huygens, Bernoulli, and others [7]. Additionally, Albert Einstein formulated stochastic motion (in the form
of ‘‘Brownian motion’’) of particles in continuous time due to their collisions with atoms and molecules [8]. Theoretical
developments have involved mathematics (especially probability theory), computer science, statistical physics, operations
research, and more. RW models have also been applied in various domains, ranging from locomotion and foraging of
animals [9–12], the dynamics of neuronal firing [13,14] and decision-making in the brain [15,16] to population genetics [17],
polymer chains [18,19], descriptions of financial markets [20,21], evolution of research interests (through RWs on problem
space) [22], ranking systems [23], dimension reduction and feature extraction from high-dimensional data (e.g., in the form
of ‘‘diffusion maps’’) [24,25], and even sports statistics [26,27]. RW theory can also help predict arrival times of diseases
spreading on networks [28]. There exist severalmonographs and review papers on RWs.Many of them treat RWs on classical
network topologies, such as regular lattices (e.g., Zd) and Cayley trees (i.e., trees in which each node has the same number
of neighboring nodes, which we henceforth call the node ‘‘degree’’) [4,29–35]. Other monographs and surveys focus on RWs
on fractal structures, revealing diffusion properties that are ‘‘anomalous’’ compared to RWs on regular lattices or Euclidean
spaces (i.e., Rd) [32,36–40]. Other literature treats RWs on finite networks, which are equivalent to a finite Markov chain (in
the discrete-time case) [1,32,41,42] and are at the core of several stochastic algorithms.

In parallel, ‘‘network science’’ has emerged in recent years as a central approach to the study of complex systems
[43–46]. Networks are a natural representation of systems composed of interacting elements and allow one to examine the
impact of structure on the dynamics and function of a system (as well as the impact of dynamics and function on network
structure). Examples include friendship networks, international relationships, gene-regulatory networks, food webs, airport
networks, the internet, andmyriadmore. In each case, one can represent the system’s connectivity structure as a set of nodes
(representing the entities in the system) and edges (representing interactions among those entities). The study of networks
is highly interdisciplinary, and it integrates theoretical and computational tools from subjects such as applied mathematics,
statistical physics, computer science, engineering, sociology, economics, biology, and other domains. Many networks exhibit
complex yet regular patterns that are explainable (sometimes arguably) by simple mechanisms. Network science has also
had a strong impact on the understanding of dynamical processes because of the critical role of structure on spreading
processes, synchronization, and others [47–49]. As with RWs, numerous books and review papers have been written on
networks, including textbooks [44,45,50–52], general review articles [46,53], and more specialized reviews on topics such

1 See https://www.youtube.com/watch?v=stgYW6M5o4k for an introduction to random walks for a public audience from the U.S. Public Broadcasting
Service (PBS).

Masuda et al., Physics Reports (2017)

Maps of random walks on complex networks
reveal community structure
Martin Rosvall*† and Carl T. Bergstrom*‡

*Department of Biology, University of Washington, Seattle, WA 98195-1800; and ‡Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

Edited by Brian Skyrms, University of California, Irvine, CA, and approved December 10, 2007 (received for review July 21, 2007)

To comprehend the multipartite organization of large-scale bio-
logical and social systems, we introduce an information theoretic
approach that reveals community structure in weighted and di-
rected networks. We use the probability flow of random walks on
a network as a proxy for information flows in the real system and
decompose the network into modules by compressing a descrip-
tion of the probability flow. The result is a map that both simplifies
and highlights the regularities in the structure and their relation-
ships. We illustrate the method by making a map of scientific
communication as captured in the citation patterns of >6,000
journals. We discover a multicentric organization with fields that
vary dramatically in size and degree of integration into the net-
work of science. Along the backbone of the network—including
physics, chemistry, molecular biology, and medicine—information
flows bidirectionally, but the map reveals a directional pattern of
citation from the applied fields to the basic sciences.

clustering ! compression ! information theory ! map of science !
bibiometrics

B iological and social systems are differentiated, multipartite,
integrated, and dynamic. Data about these systems, now

available on unprecedented scales, often are schematized as
networks. Such abstractions are powerful (1, 2), but even as
abstractions they remain highly complex. It therefore is helpful
to decompose the myriad nodes and links into modules that
represent the network (3–5). A cogent representation will retain
the important information about the network and reflect the fact
that interactions between the elements in complex systems are
weighted, directional, interdependent, and conductive. Good
representations both simplify and highlight the underlying struc-
tures and the relationships that they depict; they are maps (6, 7).

To create a good map, the cartographer must attain a fine
balance between omitting important structures by oversimplifi-
cation and obscuring significant relationships in a barrage of
superfluous detail. The best maps convey a great deal of
information but require minimal bandwidth: the best maps are
also good compressions. By adopting an information-theoretic
approach, we can measure how efficiently a map represents the
underlying geography, and we can measure how much detail is
lost in the process of simplification, which allows us to quantify
and resolve the cartographer’s tradeoff.

Network Maps and Coding Theory
In this article, we use maps to describe the dynamics across the
links and nodes in directed, weighted networks that represent the
local interactions among the subunits of a system. These local
interactions induce a system-wide flow of information that
characterizes the behavior of the full system (8–12). Conse-
quently, if we want to understand how network structure relates
to system behavior, we need to understand the flow of infor-
mation on the network. We therefore identify the modules that
compose the network by finding an efficiently coarse-grained
description of how information flows on the network. A group
of nodes among which information flows quickly and easily can
be aggregated and described as a single well connected module;

the links between modules capture the avenues of information
flow between those modules.

Succinctly describing information flow is a coding or com-
pression problem. The key idea in coding theory is that a data
stream can be compressed by a code that exploits regularities in
the process that generates the stream (13). We use a random
walk as a proxy for the information flow, because a random walk
uses all of the information in the network representation and
nothing more. Thus, it provides a default mechanism for gen-
erating a dynamics from a network diagram alone (8).

Taking this approach, we develop an efficient code to describe
a random walk on a network. We thereby show that finding
community structure in networks is equivalent to solving a
coding problem (14–16). We exemplify this method by making
a map of science, based on how information flows among
scientific journals by means of citations.

Describing a Path on a Network. To illustrate what coding has to do
with map-making, consider the following communication game.
Suppose that you and I both know the structure of a weighted,
directed network. We aim to choose a code that will allow us to
efficiently describe paths on the network that arise from a
random walk process in a language that reflects the underlying
structure of the network. How should we design our code?

If maximal compression were our only objective, we could
encode the path at or near the entropy rate of the corresponding
Markov process. Shannon showed that one can achieve this rate
by assigning to each node a unique dictionary over the outgoing
transitions (17). But compression is not our only objective; here,
we want our language to reflect the network structure, we want
the words we use to refer to things in the world. Shannon’s
approach does not do this for us because every codeword would
have a different meaning depending on where it is used. Com-
pare maps: useful maps assign unique names to important
structures. Thus, we seek a way of describing or encoding the
random walk in which important structures indeed retain unique
names. Let us look at a concrete example. Fig. 1A shows a
weighted network with n ! 25 nodes. The link thickness indicates
the relative probability that a random walk will traverse any
particular link. Overlaid on the network is a specific 71-step
realization of a random walk that we will use to illustrate our
communication game. In Fig. 1, we describe this walk with
increasing levels of compression (B–D), exploiting more and
more of the regularities in the network.

Huffman Coding. A straightforward method of giving names to
nodes is to use a Huffman code (18). Huffman codes save space
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To comprehend the multipartite organization of large-scale bio-
logical and social systems, we introduce an information theoretic
approach that reveals community structure in weighted and di-
rected networks. We use the probability flow of random walks on
a network as a proxy for information flows in the real system and
decompose the network into modules by compressing a descrip-
tion of the probability flow. The result is a map that both simplifies
and highlights the regularities in the structure and their relation-
ships. We illustrate the method by making a map of scientific
communication as captured in the citation patterns of >6,000
journals. We discover a multicentric organization with fields that
vary dramatically in size and degree of integration into the net-
work of science. Along the backbone of the network—including
physics, chemistry, molecular biology, and medicine—information
flows bidirectionally, but the map reveals a directional pattern of
citation from the applied fields to the basic sciences.
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B iological and social systems are differentiated, multipartite,
integrated, and dynamic. Data about these systems, now

available on unprecedented scales, often are schematized as
networks. Such abstractions are powerful (1, 2), but even as
abstractions they remain highly complex. It therefore is helpful
to decompose the myriad nodes and links into modules that
represent the network (3–5). A cogent representation will retain
the important information about the network and reflect the fact
that interactions between the elements in complex systems are
weighted, directional, interdependent, and conductive. Good
representations both simplify and highlight the underlying struc-
tures and the relationships that they depict; they are maps (6, 7).

To create a good map, the cartographer must attain a fine
balance between omitting important structures by oversimplifi-
cation and obscuring significant relationships in a barrage of
superfluous detail. The best maps convey a great deal of
information but require minimal bandwidth: the best maps are
also good compressions. By adopting an information-theoretic
approach, we can measure how efficiently a map represents the
underlying geography, and we can measure how much detail is
lost in the process of simplification, which allows us to quantify
and resolve the cartographer’s tradeoff.

Network Maps and Coding Theory
In this article, we use maps to describe the dynamics across the
links and nodes in directed, weighted networks that represent the
local interactions among the subunits of a system. These local
interactions induce a system-wide flow of information that
characterizes the behavior of the full system (8–12). Conse-
quently, if we want to understand how network structure relates
to system behavior, we need to understand the flow of infor-
mation on the network. We therefore identify the modules that
compose the network by finding an efficiently coarse-grained
description of how information flows on the network. A group
of nodes among which information flows quickly and easily can
be aggregated and described as a single well connected module;

the links between modules capture the avenues of information
flow between those modules.

Succinctly describing information flow is a coding or com-
pression problem. The key idea in coding theory is that a data
stream can be compressed by a code that exploits regularities in
the process that generates the stream (13). We use a random
walk as a proxy for the information flow, because a random walk
uses all of the information in the network representation and
nothing more. Thus, it provides a default mechanism for gen-
erating a dynamics from a network diagram alone (8).

Taking this approach, we develop an efficient code to describe
a random walk on a network. We thereby show that finding
community structure in networks is equivalent to solving a
coding problem (14–16). We exemplify this method by making
a map of science, based on how information flows among
scientific journals by means of citations.

Describing a Path on a Network. To illustrate what coding has to do
with map-making, consider the following communication game.
Suppose that you and I both know the structure of a weighted,
directed network. We aim to choose a code that will allow us to
efficiently describe paths on the network that arise from a
random walk process in a language that reflects the underlying
structure of the network. How should we design our code?

If maximal compression were our only objective, we could
encode the path at or near the entropy rate of the corresponding
Markov process. Shannon showed that one can achieve this rate
by assigning to each node a unique dictionary over the outgoing
transitions (17). But compression is not our only objective; here,
we want our language to reflect the network structure, we want
the words we use to refer to things in the world. Shannon’s
approach does not do this for us because every codeword would
have a different meaning depending on where it is used. Com-
pare maps: useful maps assign unique names to important
structures. Thus, we seek a way of describing or encoding the
random walk in which important structures indeed retain unique
names. Let us look at a concrete example. Fig. 1A shows a
weighted network with n ! 25 nodes. The link thickness indicates
the relative probability that a random walk will traverse any
particular link. Overlaid on the network is a specific 71-step
realization of a random walk that we will use to illustrate our
communication game. In Fig. 1, we describe this walk with
increasing levels of compression (B–D), exploiting more and
more of the regularities in the network.

Huffman Coding. A straightforward method of giving names to
nodes is to use a Huffman code (18). Huffman codes save space
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every node in the network. The Huffman code illustrated here is an efficient way to do so. The 314 bits shown under the network describe the sample trajectory
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y = f(X)
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Supervised learning

N x p matrix of features or predictors 
each row is an observation, each 
column is a feature

Alice x11 x12

Bob x21 x22

Carol x31 x32

⋮ ⋮ ⋮

p features 
(attributes)

Node attribute listRecall:



Graph neural networks

p-dimensional 
feature (attribute) 

vector

y = f(X)
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Supervised learning

N x p matrix of features or predictors 
each row is an observation, each 
column is a feature

Easy enough when observations are independent 
How to incorporate the network?
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L1 L2 L3

ƒ ƒ ƒ

propagate your data through 
the neural network, but hit it 
with the graph at each layer

Idea: 
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Graph neural networks
propagate your data through 
the neural network, but hit it 
with the graph at each layer

Idea: 

H(0) = X

H(`+1) = �

⇣
ÃH(`)W(`)
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—preprocessed adjacency matrix

e.g. Duvenaud et al. NIPS (2015) 
Kipf et al. ICLR (2017)

Applications

• classifying nodes 
• predicting links 
• comparing networks



Designing visualizations



Visualization ⊂ Communication

Visualizations are one tool to tackle the larger problem of 
communicating your results



Which kind of door handle is better?

Designing visualizations



Better? Easier to open!

Which kind of door handle is better?

Designing visualizations



"Design is how it works" 
–Steve Jobs

Designing visualizations



"Design is how it works" 
–Steve Jobs

Designing visualizations



Better? Easier to open!

Visualizations: better = easier to understand

Which kind of door handle is better?

Designing visualizations



• Know your message 
• Know your medium 
• Know your audience 
• Account for strengths and 
weaknesses of human perception 

• Keep it simple

Designing visualizations



Great info: series of articles published in Nature 
Methods during 2010-2015 called "Points of View" 

http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html
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In contrast, unintentional and inadvertent assignment of salience 
can be harmful to the communicative potential of images. In the sam-
ple heatmap shown in Figure 2, the authors chose a color scale that 
makes common sense, using deep red to represent high values. But 
in this case lower values are actually more salient than higher ones 
because deep red is hard to see against the deep blue background of 
the lowest values.

What stands out is often taken as most important or relevant. In 
one study, researchers assessed the effects of salience on the ability of 
test subjects to accurately answer questions that required interpreting 
weather maps. By alternating the relative visibility of task-relevant and 
task-irrelevant information (in this case, information about pressure 
and temperature, respectively) they found that display factors such as 
salience had large effects on task performance3. For example, a ques-
tion about wind direction was supposed to elicit an answer about air 
pressure, but when data on temperature were made most apparent, 
subjects incorrectly responded with a reference to temperature, hav-
ing been influenced by the salience of the temperature data presented. 

In presentations, a potential source of misalignment between 
salience and relevance is in the use of moving images. Presenters 
may include short movies (for example, a rotating three- 
dimensional structure). When these movies are allowed to loop con-
tinuously, this powerful competing stimulus makes it nearly impos-
sible to concentrate on other content, as motion is one of the most 
potent mechanisms for attracting attention. For this reason, animation 
in PowerPoint slides should be used judiciously. The element being 
animated should direct our attention to the most relevant content that 
supports the primary message of the slide. An oscillating arrow will 
draw more of our attention than the objects it is intended to highlight.

It is well recognized that how the same information is presented 
can dramatically affect comprehension. Making relevant information 
visually obvious will ensure that viewers notice the right content. To 
get a sense of what is most salient on the screen, stand back and squint.

Next month, I will conclude this segment of ‘design principles’ by 
discussing the value of ‘design’ itself.
Bang Wong

1. Fecteau, J. & Munoz, D. Trends Cogn. Sci. 10, 382–390 (2006).
2. Wong, B. Nat. Methods 7, 773 (2010).
3.  Hegarty, M. et al. J. Exp. Psychol. Learn. Mem. Cogn. 36, 37–53 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology & Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University School 
of Medicine.

POINTS OF VIEW

Salience to relevance
In science communication, it is critical that visual information 
be interpreted efficiently and correctly. The discordance between 
components of an image that are most noticeable and those that are 
most relevant or important can compromise the effectiveness of a 
presentation. This discrepancy can cause viewers to mistakenly pay 
attention to regions of the image that are not relevant. Ultimately, the 
misdirected attention can negatively impact comprehension.

Salience is the physical property that sets an object apart from 
its surroundings. It is particularly important to ensure that salience 
aligns with relevance in visuals used for slide presentations. In these 
situations, information transmission needs to be efficient because 
the audience member is expected to simultaneously listen and read. 
By highlighting relevant information on a slide, we can direct a 
viewer’s attention to the right information. For example, coloring 
a row or column of a table will preferentially direct attention to the 
selected material (Fig. 1a). As information presented as tables typi-
cally appears homogenous, it is especially helpful to define what is 
most important. The same approach can be applied to plots and 
graphs to delineate segments of data (Fig. 1b). Whereas these tech-
niques are not appropriate for all journal publications, annotating 
information presented in slides can be an effective mechanism to 
enable the audience to better grasp what is being said and shown.

Human vision is highly selective. When multiple stimuli are in a 
scene they compete for our visual attention. We make sense of the 
visual field by selecting, in turn, one or few objects for detailed anal-
ysis at the expense of all others. Cognitive scientists create ‘salience 
maps’ to describe the relative visibility of objects in an image that 
explain what we might look at first, second and so on1.

Using the concept of a salience map, we can rely on relative vis-
ibility to order content on the page and help us design better graph-
ics. There are several graphical variables—including color, shape, 
size and position—we can use to create salience (see October 2010 
column)2. Salience is a relative property that depends on the rela-
tionship of one object to other objects on the page. Information that 
is presented physically larger is usually easier to see and is likely to 
be read first. In a composition where most of the parts are oriented 
vertically and horizontally, elements placed at a diagonal stand out. 
On a backdrop of predominantly black-and-white elements, colored 
information is highly conspicuous (Fig. 1).

Figure 1 | Matching salience to relevance draws visual attention to 
important information. (a) Table with a row highlighted. (b) Segments of 
data in a plot emphasized with color.

Figure 2 | Discordances between salience and relevance can be harmful.  
(a) The relative visibility of hues in the color scale is asymmetric, making 
higher values (represented by deep red) less apparent. (b) Continuously 
moving images can be distracting and can compromise the viewer’s ability to 
concentrate on other content.

Color name RGB (1–255)

Black
Orange
Sky blue
Bluish green
Blue
Vermillion

0, 0, 0
230, 159, 0
86, 180, 233
0, 158, 115
0, 114, 178
213, 94, 0

a b

Slide title

Dolor sit amet, sed 
eiusmod tempor 
Ut labore et dolore 
veniam, quis 
Ullamco laboris nisi 
consequat

Lorem ipsum dolor 

Low High

a b

http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html


The challenge

Six months of work 
↓ 

~ 1000 plots 
↓ 

5-10 figures



The challenge

Six months of work 
↓ 

~ 1000 plots 
↓ 

5-10 figures
Hard to remember 
being a beginner



Know your message
A figure/visualization has a goal: what do you want 
the reader to learn?



Know your message
A figure/visualization has a goal: what do you want 
the reader to learn?

Summary sentence:
“Cancer deaths are down, but mostly due to decreased smoking rates.”
“Algorithm B converges faster than A.”
“Bats spread Ebola, not rodents.”
“The rate of text messages increased after approximately day 45.”

Build your figure(s) with this goal in mind.
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Zelazny, Say it with Charts, 2001

Use your summary 
sentence to guide the 
kind of visualization(s) 
you use



Know your medium
Print? Web? Slides?



Know your audience



Human perception
Parsing a figure or visualization requires performing visual tasks

Humans are better at some tasks and worse at others
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POINTS OF VIEW

Design of data figures
Data figures or graphs are essential to life-science communica-
tion. Using these tools authors encode information that readers 
later decode. It is imperative that graphs are interpreted correctly. 
Despite the importance and widespread use of graphs, we pri-
marily rely on our intuition, common sense and precedent in 
published material when creating them~a largely unscientific 
approach.

Because accurately interpreting visual variables is such a vital 
step in understanding graphs, a rational framework for creating 
effective graphs would accommodate the needs of the reader and 
focus on the strengths of human perception. Conversely, we want 
to avoid displays of data that are misleading or difficult to discern. 
For example, it can be tough to accurately judge the differences 
between two curves (Fig. 1a). The disparity is actually constant 
but our perceptual system is attuned to detecting minimal dis-
tances so the divergence appears to decrease. Another shortcom-
ing limits our ability to accurately judge relative area. This dimin-
ishes the usefulness of bubble charts. For example, the larger circle 
in Figure 1a is 14 times larger than the smaller circle.

In 1967, the French cartographer Jacques Bertin provided a 
wide theoretical framework for information visualization1. His 
analysis focused on the visual properties of graphical elements 
such as shape, orientation, color, texture, volume and size for dis-
playing quantitative variation. He defined several visual opera-
tions needed to extract information stored in graphs. Cleveland 
and McGill were one of the first to measure people’s ability to 
efficiently and accurately carry out these elementary perceptual 
tasks2 (Table 1).

When communicating with graphs, we want readers to perceive 
patterns and trends. This is distinct from conveying information 
through tables in which we report precise names and numbers. 
Cleveland and McGill’s study assessed people’s ability to judge the 
relative magnitude between two values encoded with a particular 
visual variable (for example, length, angle and others). In other 
words, they asked people to estimate how many times bigger A is 
when compared to B. Accuracy in their study does not imply 
reading out precise values from data points in graphs.

Different graph types depend on different visual assessments 
to uncover underlying trends. Pie charts are a common way to 
show parts of a whole. Most readers will likely judge angle when 
extracting information from pie charts, but they could also com-
pare areas and arc length of the slices (Fig. 1b). Each of these 
perceptual tasks ranks low in efficiency and accuracy (Table 1). 
Plotting the same data as a bar chart effectively shows relative 
values (Fig. 1b).

When we occasionally need to invent new ways to graph data, 
we ideally want to use perceptual tasks that rank high in effi-
ciency and accuracy (Table 1). In Figure 1c, I plotted the same 
five values using different encoding. In some cases, identifying 
magnitude and direction of change is laborious. In other cases, 
the trends are readily apparent. Encodings on the right more 
efficiently and accurately display the magnitude and direction 
of change. Though we can detect slight shifts in color hue, the 
relationship between hue and quantitative value is not obvious 
(see also ref. 3), making color hue one of the weaker methods to 
illustrate relative values.

Communicating with graphs depends on authors encoding 
information for readers to decode. Graphs’ effectiveness can 
benefit from attention to their visual design. Composing figures 
with strong visual cues and relying on accurate perceptual tasks 
supports the visual assessment critical for interpreting informa-
tion from graphs. Next month we will explore salience, the use 
of visual properties as differentiators.
Bang Wong

1.  Bertin, J. Semiology of Graphics, English translation by W.J. Berg 
(University of Wisconsin Press, Madison, Wisconsin, USA, 1983).

2. Cleveland, W.S. & McGill, R. Science 229, 828–833 (1985).
3. Wong, B. Nat. Methods 7, 573 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology and Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University 
School of Medicine.
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Figure 1 | Some visual estimations are more easily carried out than 
others. (a) Examples illustrating the difficulty in interpreting graphs and 
charts accurately. (b) Same data presented in a bar chart and in a pie 
chart. (c) Different visual variables encoding the same five values.

Table 1 | Elementary perceptual tasks
Rank Aspect to compare

1 Positions on a common scale

2 Positions on the same but nonaligned scales

3 Lengths

4 Angles, slopes

5 Area

6 Volume, color saturation

7 Color hue

Tasks are ordered from most to least accurate. Information adapted from ref. 2.

easiest

hardest

Science (1985)

Graphical Perception and Graphical 
Methods for Analyzing Scientific Data 

William S. Cleveland and Robert McGill 

Graphs provide powerful tools both 
for analyzing scientific data and for com- 
municating quantitative information. 
The computer graphics revolution, 
which began in the 1960's and has inten- 
sified during the past several years, stim- 
ulated the invention of graphical meth- 

mation from graphs; theory and experi- 
mental data are then used to order the 
tasks on the basis of accuracy. The or- 
dering has an important application: data 
should be encoded so that the visual 
decoding involves tasks as high in the 
ordering as possible, that is, tasks per- 

Summary. Graphical perception is the visual decoding of the quantitative and 
qualitative information encoded on graphs. Recent investigations have uncovered 
basic principles of human graphical perception that have important implications for 
the display of data. The computer graphics revolution has stimulated the invention of 
many graphical methods for analyzing and presenting scientific data, such as box 
plots, two-tiered error bars, scatterplot smoothing, dot charts, and graphing on a log 
base 2 scale. 

ods: types of graphs and types of quanti- 
tative information to be shown on graphs 
(1-4). One purpose of this article is to 
describe and illustrate several of these 
new methods. 

What has been missing, until recently, 
in this period of rapid graphical invention 
and deployment is the study of graphs 
and the human visual system. When a 
graph is constructed, quantitative and 
categorical information is encoded, 
chiefly through position, shape, size, 
symbols, and color. When a person 
looks at a graph, the information is visu- 
ally decoded by the person's visual sys- 
tem. A graphical method is successful 
only if the decoding is effective. No 
matter how clever and how technologi- 
cally impressive the encoding, it fails if 
the decoding process fails. Informed 
decisions about how to encode data can 
be achieved only through an understand- 
ing of this visual decoding process, 
which we call graphical perception (5). 

Our second purpose is to convey some 
recent theoretical and experimental in- 
vestigations of graphical perception. We 
identify certain elementary graphical- 
perception tasks that are performed in 
the visual decoding of quantitative infor- 

The authors are statistical scientists at AT&T Bell 
Laboratories, 600 Mountain Avenue, Murray Hill, 
New Jersey 07974. 
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formed with greater accuracy. This is 
illustrated by several examples in which 
some much-used graphical forms are 
presented, set aside, and replaced by 
new methods. 

Elementary Tasks for the Graphical 
Perception of Quantitative Information 

The first step is to identify elementary 
graphical-perception tasks that are used 
to visually extract quantitative informa- 
tion from a graph. (By "quantitative 
information" we mean numerical values 
of a variable, such as frequency of radia- 
tion and gross national product, that are 
not highly discrete; this excludes cate- 
gorical information, such as type of met- 
al and nationality, which is also shown 
on many graphs.) Ten tasks with which 
we have worked, in our theoretical in- 
vestigations and in our experiments, are 
the following: angle, area, color hue, 
color saturation, density (amount of 
black), length (distance), position along a 
common scale, positions on identical but 
nonaligned scales, slope, and volume 
(Fig. 1). 

Visual decoding as we define it for 
elementary graphical-perception tasks is 
what Julesz calls preattentive vision (6): 
the instantaneous perception of the visu- 

al field that comes without apparent 
mental effort. We also perform cognitive 
tasks such as reading scale information, 
but much of the power of graphs-and 
what distinguishes them from tables- 
comes from the ability of our preatten- 
tive visual system to detect geometric 
patterns and assess magnitudes. We 
have examined preattentive processes 
rather than cognition. 

We have studied the elementary 
graphical-perception tasks theoretically, 
borrowing ideas from the more general 
field of visual perception (7, 8), and 
experimentally by having subjects judge 
graphical elements (1, 5). The next two 
sections illustrate the methodology with 
a few examples. 

Study of Graphical Perception: Theory 

Figure 2 provides an illustration of 
theoretical reasoning that borrows some 
ideas from the field of computational 
vision (8). Suppose that the goal is to 
judge the ratio, r, of the slope of line 
segment BC to the slope of line segment 
AB in each of the three panels. Our 
visual system tells us that r is greater 
than 1 in each panel, which is correct. 
Our visual system also tells us that r is 
closer to 1 in the two rectangular panels 
than in the square panel; that is, the 
slope of BC appears closer to the slope 
of AB in the two rectangular panels than 
in the square panel. This, however, is 
incorrect; r is the same in all three pan- 
els. 

The reason for the distortion in judging 
Fig. 2 is that our visual system is geared 
to judging angle rather than slope. In 
their work on computational theories of 
vision in artificial intelligence, Marr (8) 
and Stevens (9) have investigated how 
people judge the slant and tilt (10) of the 
surfaces of three-dimensional objects. 
They argue that we judge slant and tilt as 
angles and not, for example, as their 
tangents, which are the slopes. An angle 
contamination of slope judgments ex- 
plains the distortion in judgments of Fig. 
2. Let the angle of a line segment be the 
angle between it and a horizontal ray 
extending to the right (0 in Fig. 3). The 
angles of the line segments in the square 
panel of Fig. 2 are not as similar in 
magnitude as the angles in either of the 
rectangular panels; this makes the slopes 
in the rectangular panels seem closer in 
value. 

Again, let 0 be the angle of a line 
segment. Suppose a second line segment 
has an angle 0 + AO where AO is small 
but just large enough that a difference in 
the orientations of the line segments can 
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Design of data figures
Data figures or graphs are essential to life-science communica-
tion. Using these tools authors encode information that readers 
later decode. It is imperative that graphs are interpreted correctly. 
Despite the importance and widespread use of graphs, we pri-
marily rely on our intuition, common sense and precedent in 
published material when creating them~a largely unscientific 
approach.

Because accurately interpreting visual variables is such a vital 
step in understanding graphs, a rational framework for creating 
effective graphs would accommodate the needs of the reader and 
focus on the strengths of human perception. Conversely, we want 
to avoid displays of data that are misleading or difficult to discern. 
For example, it can be tough to accurately judge the differences 
between two curves (Fig. 1a). The disparity is actually constant 
but our perceptual system is attuned to detecting minimal dis-
tances so the divergence appears to decrease. Another shortcom-
ing limits our ability to accurately judge relative area. This dimin-
ishes the usefulness of bubble charts. For example, the larger circle 
in Figure 1a is 14 times larger than the smaller circle.

In 1967, the French cartographer Jacques Bertin provided a 
wide theoretical framework for information visualization1. His 
analysis focused on the visual properties of graphical elements 
such as shape, orientation, color, texture, volume and size for dis-
playing quantitative variation. He defined several visual opera-
tions needed to extract information stored in graphs. Cleveland 
and McGill were one of the first to measure people’s ability to 
efficiently and accurately carry out these elementary perceptual 
tasks2 (Table 1).

When communicating with graphs, we want readers to perceive 
patterns and trends. This is distinct from conveying information 
through tables in which we report precise names and numbers. 
Cleveland and McGill’s study assessed people’s ability to judge the 
relative magnitude between two values encoded with a particular 
visual variable (for example, length, angle and others). In other 
words, they asked people to estimate how many times bigger A is 
when compared to B. Accuracy in their study does not imply 
reading out precise values from data points in graphs.

Different graph types depend on different visual assessments 
to uncover underlying trends. Pie charts are a common way to 
show parts of a whole. Most readers will likely judge angle when 
extracting information from pie charts, but they could also com-
pare areas and arc length of the slices (Fig. 1b). Each of these 
perceptual tasks ranks low in efficiency and accuracy (Table 1). 
Plotting the same data as a bar chart effectively shows relative 
values (Fig. 1b).

When we occasionally need to invent new ways to graph data, 
we ideally want to use perceptual tasks that rank high in effi-
ciency and accuracy (Table 1). In Figure 1c, I plotted the same 
five values using different encoding. In some cases, identifying 
magnitude and direction of change is laborious. In other cases, 
the trends are readily apparent. Encodings on the right more 
efficiently and accurately display the magnitude and direction 
of change. Though we can detect slight shifts in color hue, the 
relationship between hue and quantitative value is not obvious 
(see also ref. 3), making color hue one of the weaker methods to 
illustrate relative values.

Communicating with graphs depends on authors encoding 
information for readers to decode. Graphs’ effectiveness can 
benefit from attention to their visual design. Composing figures 
with strong visual cues and relying on accurate perceptual tasks 
supports the visual assessment critical for interpreting informa-
tion from graphs. Next month we will explore salience, the use 
of visual properties as differentiators.
Bang Wong

1.  Bertin, J. Semiology of Graphics, English translation by W.J. Berg 
(University of Wisconsin Press, Madison, Wisconsin, USA, 1983).

2. Cleveland, W.S. & McGill, R. Science 229, 828–833 (1985).
3. Wong, B. Nat. Methods 7, 573 (2010).
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Figure 1 | Some visual estimations are more easily carried out than 
others. (a) Examples illustrating the difficulty in interpreting graphs and 
charts accurately. (b) Same data presented in a bar chart and in a pie 
chart. (c) Different visual variables encoding the same five values.

Table 1 | Elementary perceptual tasks
Rank Aspect to compare

1 Positions on a common scale

2 Positions on the same but nonaligned scales

3 Lengths

4 Angles, slopes

5 Area

6 Volume, color saturation

7 Color hue

Tasks are ordered from most to least accurate. Information adapted from ref. 2.
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(see also ref. 3), making color hue one of the weaker methods to 
illustrate relative values.

Communicating with graphs depends on authors encoding 
information for readers to decode. Graphs’ effectiveness can 
benefit from attention to their visual design. Composing figures 
with strong visual cues and relying on accurate perceptual tasks 
supports the visual assessment critical for interpreting informa-
tion from graphs. Next month we will explore salience, the use 
of visual properties as differentiators.
Bang Wong

1.  Bertin, J. Semiology of Graphics, English translation by W.J. Berg 
(University of Wisconsin Press, Madison, Wisconsin, USA, 1983).

2. Cleveland, W.S. & McGill, R. Science 229, 828–833 (1985).
3. Wong, B. Nat. Methods 7, 573 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology and Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University 
School of Medicine.

THIS MONTH

a

c

b

A

Color Color Area Angle Length Position PositionVolume

B

B

C

C

D

D

E

E A

Figure 1 | Some visual estimations are more easily carried out than 
others. (a) Examples illustrating the difficulty in interpreting graphs and 
charts accurately. (b) Same data presented in a bar chart and in a pie 
chart. (c) Different visual variables encoding the same five values.

Table 1 | Elementary perceptual tasks
Rank Aspect to compare

1 Positions on a common scale

2 Positions on the same but nonaligned scales

3 Lengths

4 Angles, slopes

5 Area

6 Volume, color saturation

7 Color hue

Tasks are ordered from most to least accurate. Information adapted from ref. 2.

NATURE METHODS | VOL.7 NO.9 | SEPTEMBER 2010 | 665

POINTS OF VIEW

Design of data figures
Data figures or graphs are essential to life-science communica-
tion. Using these tools authors encode information that readers 
later decode. It is imperative that graphs are interpreted correctly. 
Despite the importance and widespread use of graphs, we pri-
marily rely on our intuition, common sense and precedent in 
published material when creating them~a largely unscientific 
approach.

Because accurately interpreting visual variables is such a vital 
step in understanding graphs, a rational framework for creating 
effective graphs would accommodate the needs of the reader and 
focus on the strengths of human perception. Conversely, we want 
to avoid displays of data that are misleading or difficult to discern. 
For example, it can be tough to accurately judge the differences 
between two curves (Fig. 1a). The disparity is actually constant 
but our perceptual system is attuned to detecting minimal dis-
tances so the divergence appears to decrease. Another shortcom-
ing limits our ability to accurately judge relative area. This dimin-
ishes the usefulness of bubble charts. For example, the larger circle 
in Figure 1a is 14 times larger than the smaller circle.

In 1967, the French cartographer Jacques Bertin provided a 
wide theoretical framework for information visualization1. His 
analysis focused on the visual properties of graphical elements 
such as shape, orientation, color, texture, volume and size for dis-
playing quantitative variation. He defined several visual opera-
tions needed to extract information stored in graphs. Cleveland 
and McGill were one of the first to measure people’s ability to 
efficiently and accurately carry out these elementary perceptual 
tasks2 (Table 1).

When communicating with graphs, we want readers to perceive 
patterns and trends. This is distinct from conveying information 
through tables in which we report precise names and numbers. 
Cleveland and McGill’s study assessed people’s ability to judge the 
relative magnitude between two values encoded with a particular 
visual variable (for example, length, angle and others). In other 
words, they asked people to estimate how many times bigger A is 
when compared to B. Accuracy in their study does not imply 
reading out precise values from data points in graphs.

Different graph types depend on different visual assessments 
to uncover underlying trends. Pie charts are a common way to 
show parts of a whole. Most readers will likely judge angle when 
extracting information from pie charts, but they could also com-
pare areas and arc length of the slices (Fig. 1b). Each of these 
perceptual tasks ranks low in efficiency and accuracy (Table 1). 
Plotting the same data as a bar chart effectively shows relative 
values (Fig. 1b).

When we occasionally need to invent new ways to graph data, 
we ideally want to use perceptual tasks that rank high in effi-
ciency and accuracy (Table 1). In Figure 1c, I plotted the same 
five values using different encoding. In some cases, identifying 
magnitude and direction of change is laborious. In other cases, 
the trends are readily apparent. Encodings on the right more 
efficiently and accurately display the magnitude and direction 
of change. Though we can detect slight shifts in color hue, the 
relationship between hue and quantitative value is not obvious 
(see also ref. 3), making color hue one of the weaker methods to 
illustrate relative values.

Communicating with graphs depends on authors encoding 
information for readers to decode. Graphs’ effectiveness can 
benefit from attention to their visual design. Composing figures 
with strong visual cues and relying on accurate perceptual tasks 
supports the visual assessment critical for interpreting informa-
tion from graphs. Next month we will explore salience, the use 
of visual properties as differentiators.
Bang Wong

1.  Bertin, J. Semiology of Graphics, English translation by W.J. Berg 
(University of Wisconsin Press, Madison, Wisconsin, USA, 1983).

2. Cleveland, W.S. & McGill, R. Science 229, 828–833 (1985).
3. Wong, B. Nat. Methods 7, 573 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology and Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University 
School of Medicine.

THIS MONTH

a

c

b

A

Color Color Area Angle Length Position PositionVolume

B

B

C

C

D

D

E

E A

Figure 1 | Some visual estimations are more easily carried out than 
others. (a) Examples illustrating the difficulty in interpreting graphs and 
charts accurately. (b) Same data presented in a bar chart and in a pie 
chart. (c) Different visual variables encoding the same five values.

Table 1 | Elementary perceptual tasks
Rank Aspect to compare

1 Positions on a common scale

2 Positions on the same but nonaligned scales

3 Lengths

4 Angles, slopes

5 Area

6 Volume, color saturation

7 Color hue

Tasks are ordered from most to least accurate. Information adapted from ref. 2.

Avoid Pie Charts!vs.

Example: Comparing areas vs. lengths



Human perception
Perceptual biases plague even basic graphics

Cleveland & McGill (1985)



Human perception
Perceptual biases plague even basic graphics

Cleveland & McGill (1985)



Iterate! 

Readability is the 
most important goal!

Ver. 1 Ver. 2

Ver. 3 Ver. 4

Getting it right 
takes time



color



Colormaps
continuous (function)

Color schemes
discrete palette

Good idea to lean on existing, evidence-based palettes (Tableau 10) and maps (Viridis)

tableau.com: How we designed the new color palettes SciPy 2015: A Better Default Colormap for Matplotlib [YouTube]

https://www.tableau.com/about/blog/2016/7/colors-upgrade-tableau-10-56782
https://www.youtube.com/watch?v=xAoljeRJ3lU
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Color blindness
Since my first column on color coding1 appeared, we have received a 
number of e-mails asking us to highlight the issue of color blindness. 
One of those correspondences was published in the October 2010 
issue2. Here I offer guidelines to make graphics accessible to those 
with color vision deficiencies.

Color blindness affects a substantial portion of the human population. 
Protanopia and deuteranopia, the two most common forms of inherited 
color blindness, are red-green color vision defects caused by the absence 
of red or green retinal photoreceptors, respectively. In individuals of 
Northern European ancestry, as many as 8 percent of men and 0.5 per-
cent of women experience the common form of red-green color blind-
ness3. If a submitted manuscript happens to go to three male reviewers 
of Northern European descent, the chance that at least one will be color 

blind is 22 percent.
Picking colors suitable 

for color-blind read-
ers not only enhances 
accessibility but also is 
good graphic design 
practice. For example, 
the Ishihara color vision 
test intentionally relies 
only on color hue to 
create contrast, as evi-
dent when the image is 
converted to grayscale  
(Fig. 1a). In general, 
colors will be easier to 
distinguish when they 
vary in lightness and 
saturation as well as hue  
(Fig. 1b). The palette of 

eight colors shown in Figure 2 has good overall variability and can be 
differentiated by individuals with red-green color blindness.

It is useful to remember that pure red and pure green are not the 
only culprits in color confusion—rather, any color with components 
of red and green can cause trouble. Authors can rely on software to 
simulate how images might appear to individuals with red-green 
color blindness. In Adobe Illustrator and Photoshop, first convert the 
document to RGB color space for accurate simulation and create a 

soft proof (View > Proof Setup > Color Blindness). Simultaneously 
viewing the original and the soft proof (Window > Arrange > New 
Window in Photoshop) makes it convenient to adjust colors in order 
to make them universally accessible. Web-based tools such as Vischeck 
(www.vischeck.com) can also produce simulated images. 

Perhaps the most widespread use of red-green color coding in the 
life sciences is in immunofluorescent images (Fig. 3a). To make this 
and other artificial color schemes accessible to readers with red-green 
color blindness, replace red with magenta (Fig. 3b, top). This can be 
easily accomplished using Photoshop. Because red mixes with blue to 
produce magenta, copy the contents from the red channel (Window >  
Channels) and paste them into the blue channel. This unconventional 
magenta-green color coding may require a key indicating that the 
overlap of these colors produces white. Alternatively, some individu-
als with red-green color blindness find that replacing green with tur-
quoise provides the most visible difference (Fig. 3b, bottom).

For color-blind individuals viewing existing images with colors that 
are difficult to discriminate, there are several tools for computers and 
mobile devices that may be helpful. The DanKam app for iPhone and 
Android takes information coming into the phone’s camera and shifts 
the color spectrum so that colors fall within the range that people who 
are color blind can see. eyePilot (www.colorhelper.com) and Visolve 
Deflector (www.ryobi-sol.co.jp/visolve/en/deflector.html) each use a 
‘lens’ to enable users to manipulate colors of any content on the screen. 
People with typical color vision may also find these computer tools 
useful. For example, eyePilot permits one to isolate specific colors 
against a gray background, facilitating in-depth analysis of presenta-
tions with complex color-coding schemes.
Bang Wong

1. Wong, B. Nat. Methods 7, 573 (2010).
2. Albrecht, M. Nat. Methods 7, 775 (2010).
3. Deeb, S.S. Clin. Genet. 67, 369–377 (2005).
4. Jones, S.A et al. Nat. Methods 8, 499 –505 (2011).
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Figure 3 | Red-green color coding in an immunofluorescent image.  
(a) Conventional color coding is difficult for individuals with red-green color 
blindness (protanopia or deuteranopia) to discriminate. (b) Replacing red 
with magenta (top) or green with turquoise (bottom) improves visibility for 
such individuals. Source image from reference 4.

Figure 1 | Ishihara color-vision test plate. 
(a) Viewers with normal color vision should 
see the numeral ‘6’. (b) Changing lightness 
of background improves contrast.

Figure 2 | Colors optimized for color-blind individuals. P and D indicate 
simulated colors as seen by individuals with protanopia and deuteranopia, 
respectively.
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Color blindness: the eye is a noisy channel

Don't rely completely on 
color— tweak hue/
saturation to improve 
contrast

Red/Green blindness is 
most common → avoid it 



Put it all 
together:

kenziemurphy.github.io/vinyl/

Keep it simple?

https://kenziemurphy.github.io/vinyl/
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Fruits

Dairy

Spices

Alcoholic beverages

Nuts and seeds

Seafoods

Meats

Herbs

Plant derivatives

Vegetables

Flowers

Animal products

Plants

Cereal

50 %

30 %

10 %

1 %

Flavor Network

Flavor network. Culinary ingredients (circles) and their chemical relationship are illustrated. The color of each ingredient represents the food category that the ingredient belongs to, and the size of an ingredient is proportional to the usage frequency (collected from online recipe databases: 
epicurious.com, allrecipes.com, menupan.com). Two culinary ingredients are connected if they share many flavor compounds. We extracted the list of flavor compounds in each ingredient from the book “Fenaroli’s handbook of flavor ingredients (5th ed.)” and then applied a backbone extraction 
method by Serrano et al. (PNAS 106, 6483) to pick statistically significant links between ingredients. The thickness of an edge represents the number of shared flavor compounds. To reduce clutter, edges are bundled based on the algorithm by Danny Holten (http://www.win.tue.nl/~dholten/).     

CategoriesPrevalenceShared 
compounds

Yong-Yeol Ahn, Sebastian Ahnert, James P. Bagrow, and A.-L. Barabási
“Flavor network and the principles of food pairing”, Scientific Reports 1, 196 (2011)
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Figure 3: Identifying the location of a missing node. (A) A scale-free network of 250 nodes with a single node hidden (⇧). The
neighbors of the hidden node are indicated with ⇤ while other nodes are �. The size and color of each node is proportional to
the rms error of the information transfer time from that node to every other node in the network. We see that the neighbors of
the missing node consistently have higher errors than the rest of the network. (B) The distributions of error and bias across the
ensemble of tampered networks for the hidden node’s neighbors, next-nearest neighbors, and non-neighbors. The median error
for neighbors is approximately 4.33 timesteps while for non-neighbors it is approximately 1.11 timesteps. The distributions are
significantly di↵erent (Mann-Whitney U test p ⌧ 10�10, Cohen’s d = 4.69). The next-nearest neighbors have errors comparable
to non-neighbors (p = 0.052) but we see a greater number of outliers skewing upward. This indicates that there are some network
e↵ects in how errors propagate, but they are relatively rare. Likewise, we see positive bias for neighbor nodes, significantly higher
than for non-neighbors (Mann-Whitney U test p ⌧ 10�10, Cohen’s d = 3.37). This positive bias indicates that information spreads
faster from (or to) neighbors of the hidden node than the SR model expects, supporting the intuition behind Fig. 1. To control for
the centrality of the hidden node, in each realization the hidden node was the node with the fifth highest degree.

in the network, false nodes that do not actually exist, the splitting of a true node into multiple false nodes, or the

merging of multiple true nodes into a single false node. Some of these errors will likely prove more challenging to

detect than others, but the benchmarking procedure we have introduced here may o↵er some hope towards tackling

these problems.
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.
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5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia
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Network portraits
Network portraits were introduced in (Bagrow et al. 2008) as a way to visualize and
encode many structural properties of a given network. Specifically, the network portrait
B is the array with (!, k) elements

B!,k ≡ the number of nodes who have k nodes at distance ! (2)

for 0 ≤ ! ≤ d and 0 ≤ k ≤ N − 1, where distance is taken as the shortest path length and
d is the graph’s diameter 1. The elements of this array are computed using, e.g., Breadth-
First Search. Crucially, nomatter how a graph’s nodes are ordered or labeled the portrait is
identical. We draw several example networks and their corresponding portraits in Fig. 1.
This matrix encodes many structural features of the graph. The zeroth row stores the

number of nodes N in the graph:

B0,k = Nδk,1.

The first row captures the degree distribution P(k):

B1,k = NP(k),

as neighbors are at distance ! = 1. The second row captures the distribution of next-
nearest neighbors, and so forth for higher rows. The number of edgesM is ∑N

k=0 kB1,k =
2M. The graph diameter d is

d = max{! | B!,k > 0 for k > 0}.

The shortest path distribution is also captured: the number of shortest paths of length
! is 1

2
∑N

k=0 kB!,k . And the portraits of random graphs present very differently from
highly ordered structures such as lattices (Fig. 1), demonstrating how dimensionality and
regularity of the network is captured in the portrait (Bagrow et al. 2008).
One of the most important properties of portraits is that they are a graph invariant:

Fig. 1 Example networks and their portraits. The random network is an Erdős-Rényi graph while the real
network is the NCAA Division-I football network (Park and Newman 2005). Colors denote the entries of the
portrait matrix B (Eq. (2); white indicates B!,k = 0)
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of biomass being exchanged. An important detail, however, is that these food webs
are not closed systems; they have both input and output, and there is an exchange
of material with the ambient environment. Omitting such transfers would lead to an
apparent non-conservation of biomass. To overcome this, we add a connection from
the output compartments to an input, ensuring conservation. This effectively cre-
ates reservoirs (as in systems in contact with heat baths at different temperatures)
and allows currents in the stationary state.

We focus on a comprehensive study of the food web in Florida Bay [16], a tropical
lagoon in the Florida Keys and a series of mangrove-lined bays at the southern end
of the Florida peninsula. Our data are taken from the material on the researchers’
website, http://www.cbl.umces.edu/∼atlss/FBay001.html.

In Fig. 6, we show a plot of the connections between compartments, using con-
ventional graphing techniques. Due to the dense number of connections between
compartments, this graph is not informative.

By contrast, the OR, Fig. 7, is more manageable. It (automatically) groups the
compartments into related categories (primary producers, fishes, etc.). The lines
connect points on the faces of the convex hull. The most evident feature is that the
primary producers and detritus define the outer limits of the convex hull and are

Fig. 6. (Color online) The Florida Bay trophic network in which node locations are determined
by the Graphviz force-spring algorithm [13]. Symbols roughly correspond to the categories used
in Figs. 6 and 8.
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Fig. 8. (Color online) The OR of the Florida Bay biomass transfer network. As above, each point
represents a compartment. Several interesting compartments have been annotated, showing the
“top of the food chain” animals as well as the critically endangered Hawksbill Turtle. Note that
points have been slightly displaced for clarity (without this some points lie atop one another,
as in the vertices of Fig. 2). This figure, plotting real and imaginary parts of eigenvectors, also
illustrates another point. For many applications, R can have complex eigenvalues and eigenvectors.
But because R itself is real, both eigenvalues and eigenvectors come in complex conjugate pairs.
In this case it can be useful to plot real and imaginary parts of the eigenvectors.

Suppose that several taxa, x1, x2, x3 (say), are all nourished by a single (other) com-
partment, say x0 — they have no other significant intake. Recall that the original
flow matrix was not stochastic. This leads to ambiguity in producing a stochastic
matrix (alluded to earlier). The choice we make here is to have the diagonal of R
be zero. For Rx0xi , i = 1, 2, 3, this means that each of these entries is unity. Equa-
tion (1) then becomes λkAk(x0) = Ak(xi), i = 1, 2, 3. If we now further assume
that the λs are not too different from one another (which seems to happen for the
larger eigenvalues of the matrix under consideration), it follows that all Ak(xi) have
essentially the same value — which means that they are located in the same place
in the OR. An example of this is shown in Fig. 9, where compartments 90 and 99
are quite close in both the 1-2-3 and the 2-3-4 ORs. Checking actual consumption
values, one does not have precisely the situation just discussed; rather these taxa,
Mackerels and Other Pelagics, have substantially the same diet, largely in compart-
ment 59, but with parallel patterns in other compartments. In Appendix B, we deal
with the theory of the more general situation.

In the Florida Bay graph some compartments are tightly gathered, some are
not. The herpetofauna and the avifauna (respectively) form tight clusters, while
fishes and microfauna are all over the place. This remains true for other large

Ghoniem et al. InfoVis'04 (2004) 
Foucault Welles & Meirelles (2015) 
Foucault Welles & Xu (2018)
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of biomass being exchanged. An important detail, however, is that these food webs
are not closed systems; they have both input and output, and there is an exchange
of material with the ambient environment. Omitting such transfers would lead to an
apparent non-conservation of biomass. To overcome this, we add a connection from
the output compartments to an input, ensuring conservation. This effectively cre-
ates reservoirs (as in systems in contact with heat baths at different temperatures)
and allows currents in the stationary state.

We focus on a comprehensive study of the food web in Florida Bay [16], a tropical
lagoon in the Florida Keys and a series of mangrove-lined bays at the southern end
of the Florida peninsula. Our data are taken from the material on the researchers’
website, http://www.cbl.umces.edu/∼atlss/FBay001.html.

In Fig. 6, we show a plot of the connections between compartments, using con-
ventional graphing techniques. Due to the dense number of connections between
compartments, this graph is not informative.

By contrast, the OR, Fig. 7, is more manageable. It (automatically) groups the
compartments into related categories (primary producers, fishes, etc.). The lines
connect points on the faces of the convex hull. The most evident feature is that the
primary producers and detritus define the outer limits of the convex hull and are

Fig. 6. (Color online) The Florida Bay trophic network in which node locations are determined
by the Graphviz force-spring algorithm [13]. Symbols roughly correspond to the categories used
in Figs. 6 and 8.
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Fig. 8. (Color online) The OR of the Florida Bay biomass transfer network. As above, each point
represents a compartment. Several interesting compartments have been annotated, showing the
“top of the food chain” animals as well as the critically endangered Hawksbill Turtle. Note that
points have been slightly displaced for clarity (without this some points lie atop one another,
as in the vertices of Fig. 2). This figure, plotting real and imaginary parts of eigenvectors, also
illustrates another point. For many applications, R can have complex eigenvalues and eigenvectors.
But because R itself is real, both eigenvalues and eigenvectors come in complex conjugate pairs.
In this case it can be useful to plot real and imaginary parts of the eigenvectors.

Suppose that several taxa, x1, x2, x3 (say), are all nourished by a single (other) com-
partment, say x0 — they have no other significant intake. Recall that the original
flow matrix was not stochastic. This leads to ambiguity in producing a stochastic
matrix (alluded to earlier). The choice we make here is to have the diagonal of R
be zero. For Rx0xi , i = 1, 2, 3, this means that each of these entries is unity. Equa-
tion (1) then becomes λkAk(x0) = Ak(xi), i = 1, 2, 3. If we now further assume
that the λs are not too different from one another (which seems to happen for the
larger eigenvalues of the matrix under consideration), it follows that all Ak(xi) have
essentially the same value — which means that they are located in the same place
in the OR. An example of this is shown in Fig. 9, where compartments 90 and 99
are quite close in both the 1-2-3 and the 2-3-4 ORs. Checking actual consumption
values, one does not have precisely the situation just discussed; rather these taxa,
Mackerels and Other Pelagics, have substantially the same diet, largely in compart-
ment 59, but with parallel patterns in other compartments. In Appendix B, we deal
with the theory of the more general situation.

In the Florida Bay graph some compartments are tightly gathered, some are
not. The herpetofauna and the avifauna (respectively) form tight clusters, while
fishes and microfauna are all over the place. This remains true for other large

Observable RepresentationGhoniem et al. InfoVis'04 (2004) 
Foucault Welles & Meirelles (2015) 
Foucault Welles & Xu (2018)
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Network visualizations

All these points still hold for 
visualizing networks
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Figure 1: Example networks and their portraits. The random network is an Erd�s-Rényi graph while the real network is the NCAA
Division-I football network [23].

2 Network portraits

Network portraits were introduced in [22] as a way to visualize and encode many structural properties of a given

network. Specifically, the network portrait B is the array with (`, k) elements

B`,k ⌘ the number of nodes who have k nodes at distance ` (1)

for 0  `  d and 0  k  N � 1, where distance is taken as the shortest path length and d is the graph’s diameter 1.

The elements of this array are computed using, e.g., Breadth-First Search. Crucially, no matter how a graph’s nodes

are ordered or labeled the portrait is identical. We draw several example networks and their corresponding portraits in

Fig. 1.

This matrix encodes many structural features of the graph. The zeroth row stores the number of nodes N in the

graph:

B0,k = N�k,N .

The first row captures the degree distribution P(k):

B1,k = N P(k),

1Note that a distance ` = 0 is admissible, with two nodes i and j at distance 0 when i = j. This means that the matrix B so defined has a zeroth
row. It also has a zeroth column, as there may be nodes that have zero nodes at some distance `. This occurs for nodes with eccentricity less than
the graph diameter.
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.
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Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia
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Figure 3: Identifying the location of a missing node. (A) A scale-free network of 250 nodes with a single node hidden (⇧). The
neighbors of the hidden node are indicated with ⇤ while other nodes are �. The size and color of each node is proportional to
the rms error of the information transfer time from that node to every other node in the network. We see that the neighbors of
the missing node consistently have higher errors than the rest of the network. (B) The distributions of error and bias across the
ensemble of tampered networks for the hidden node’s neighbors, next-nearest neighbors, and non-neighbors. The median error
for neighbors is approximately 4.33 timesteps while for non-neighbors it is approximately 1.11 timesteps. The distributions are
significantly di↵erent (Mann-Whitney U test p ⌧ 10�10, Cohen’s d = 4.69). The next-nearest neighbors have errors comparable
to non-neighbors (p = 0.052) but we see a greater number of outliers skewing upward. This indicates that there are some network
e↵ects in how errors propagate, but they are relatively rare. Likewise, we see positive bias for neighbor nodes, significantly higher
than for non-neighbors (Mann-Whitney U test p ⌧ 10�10, Cohen’s d = 3.37). This positive bias indicates that information spreads
faster from (or to) neighbors of the hidden node than the SR model expects, supporting the intuition behind Fig. 1. To control for
the centrality of the hidden node, in each realization the hidden node was the node with the fifth highest degree.

in the network, false nodes that do not actually exist, the splitting of a true node into multiple false nodes, or the

merging of multiple true nodes into a single false node. Some of these errors will likely prove more challenging to

detect than others, but the benchmarking procedure we have introduced here may o↵er some hope towards tackling

these problems.
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Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85
using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

changing the bundling strength β and by switching between differ-
ent tree layouts. The participants from academia were our fellow re-
searchers, PhD students and MSc students from the Computer Science
department of the Technische Universiteit Eindhoven. They all had ex-
perience with either software development, software visualization, or
information visualization in general. Participants from industry were
representatives of the Software Improvement Group (SIG) in Amster-
dam, which delivers insight in the structure and technical quality of
software portfolios, and representatives of FEI Company Eindhoven,
which produces software to operate with FEI’s range of electron mi-
croscopes.

The majority of the participants regarded the technique as useful
for quickly gaining insight in the adjacency relations present in hier-
archically organized systems. In general, the visualizations were also
regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave
an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
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Hierarchical Edge Bundles:
Visualization of Adjacency Relations in Hierarchical Data

Danny Holten

Abstract—A compound graph is a frequently encountered type of data set. Relations are given between items, and a hierarchy is
defined on the items as well. We present a new method for visualizing such compound graphs. Our approach is based on visually
bundling the adjacency edges, i.e., non-hierarchical edges, together. We realize this as follows. We assume that the hierarchy is
shown via a standard tree visualization method. Next, we bend each adjacency edge, modeled as a B-spline curve, toward the
polyline defined by the path via the inclusion edges from one node to another. This hierarchical bundling reduces visual clutter
and also visualizes implicit adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes. Furthermore, hierarchical edge bundling is a generic method which can be used in conjunction with existing
tree visualization techniques. We illustrate our technique by providing example visualizations and discuss the results based on an
informal evaluation provided by potential users of such visualizations.

Index Terms—Network visualization, edge bundling, edge aggregation, edge concentration, curves, graph visualization, tree visual-
ization, node-link diagrams, hierarchies, treemaps.

!

1 INTRODUCTION

There is a large class of data sets that contain both hierarchical
components, i.e., parent-child relations between data items, as well
as non-hierarchical components representing additional relations be-
tween data items. Parent-child relations are henceforth called in-
clusion relations, whereas additional, non-hierarchical relations are
henceforth called adjacency relations. Some examples of such data
sets are:

• A hierarchically organized software system, e.g., source code di-
vided into directories, files, and classes, and the relations be-
tween these elements, for instance, dependency relations;

• Social networks comprised of individuals at the lowest level of
the hierarchy and groups of individuals at higher levels of the
hierarchy. Relations could indicate if (groups of) people are ac-
quainted and what the nature of their relationship is;

• A hierarchically organized citation network consisting of publi-
cations at the lowest level of the hierarchy and departments and
institutes at higher levels of the hierarchy. Links between publi-
cations indicate one publication citing the other.

If we want to gain more insight in the hierarchical organization of
each of the examples mentioned above, we can visualize the hierar-
chical structure using one of the many tree visualization methods that
have been proposed in the past [2, 7, 15, 18, 24, 27]. However, if we
want to visualize additional adjacency edges on top of this by adding
edges in a straightforward way, this generally leads to visual clutter
[3] (see figure 2a).

A possible way to alleviate this problem is to treat the tree and
the adjacency graph as a single graph. Let the tree be represented
by T = (V,EI) and the adjacency graph by G(V,EA). If the inclusion
edges EI and the adjacency edges EA are merged into a single set of
uniform edges, then the graph G′ = (V,EI ,EA) can be visualized us-
ing a generic graph layout algorithm [2, 12, 15]. The problem that
results from resorting to such a generic algorithm is that the inclusion

• Danny Holten is with Technische Universiteit Eindhoven, E-mail:
d.h.r.holten@tue.nl.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

and adjacency edges become intertwined, which can make it difficult
to visually separate both types of edges from each other.

At present, only few techniques are available that are specifically
designed to display adjacency relations on top of a tree structure, as
is also mentioned by Neumann et al. [20]. Hence, the focus of this
paper is on the construction of a generic technique for the visualiza-
tion of compound graphs and compound directed graphs (digraphs)
comprised of a tree and an additional (directed) adjacency graph.

We present hierarchical edge bundles, as described below, for the
visualization of compound (di)graphs. Hierarchical edge bundling is
based on the principle of visually bundling adjacency edges together
analogous to the way electrical wires and network cables are merged
into bundles along their joint paths and fanned out again at the end,
in order to make an otherwise tangled web of wires and cables more
manageable. The main features of the proposed technique are as fol-
lows:

• Hierarchical edge bundling is a flexible and generic method that
can be used in conjunction with existing tree visualization tech-
niques to enable users to choose the tree visualization that they
prefer and to facilitate integration into existing tools;

• Hierarchical edge bundling reduces visual clutter when dealing
with large numbers of adjacency edges;

• Hierarchical edge bundling provides an intuitive and continuous
way to control the strength of bundling. Low bundling strength
mainly provides low-level, node-to-node connectivity informa-
tion, whereas high bundling strength provides high-level infor-
mation as well by implicit visualization of adjacency edges be-
tween parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

The remaining part of this paper is organized as follows. In sec-
tion 2 we give an overview of tree visualization techniques and exist-
ing techniques for visualizing additional adjacency edges. Section 3
describes the proposed hierarchical edge bundling technique in detail,
followed by section 4, in which we present example visualizations and
an informal evaluation. Finally, section 5 presents conclusions and
possible directions for future work.

2 RELATED WORK

Since hierarchical edge bundles can be used in conjunction with ex-
isting tree visualization techniques, we first give an overview of tech-
niques that are commonly used for visualizing trees, followed by an
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Flavor network. Culinary ingredients (circles) and their chemical relationship are illustrated. The color of each ingredient represents the food category that the ingredient belongs to, and the size of an ingredient is proportional to the usage frequency (collected from online recipe databases: 
epicurious.com, allrecipes.com, menupan.com). Two culinary ingredients are connected if they share many flavor compounds. We extracted the list of flavor compounds in each ingredient from the book “Fenaroli’s handbook of flavor ingredients (5th ed.)” and then applied a backbone extraction 
method by Serrano et al. (PNAS 106, 6483) to pick statistically significant links between ingredients. The thickness of an edge represents the number of shared flavor compounds. To reduce clutter, edges are bundled based on the algorithm by Danny Holten (http://www.win.tue.nl/~dholten/).     
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star anise

strawberry jam

lamb

crab

goat cheese

tamarind

orange flower

citrus

pork liver

white wine

potato

raisin

yam

watermelon

pineapple

black bean

red bean

popcorn

okra

chinese cabbage

peanut

fennel

red wine

whiskey

tomato

garlic

juniper berry
tangerine

coconut oil

bell pepper

durian

macadamia nut

lemon juice

honey

swiss cheese

cider

bread

milk

cognac

yeast

tomato juice

flower

clove

corn flake

wine

raw beef

sesame oil

corn grit

brassica

cinnamon

papaya

raspberry

avocado

ouzo

katsuobushi

kumquat

roasted nut

spearmint

anise seed

strawberry

plum

rose

brown rice

soybean oil

melon

cabbage

bay

cauliflower

laurel

vegetable
pistachio

kohlrabi

prickly pear

fenugreek

lemon

bergamot

cranberry

enokidake

coconut

sauerkraut

apple brandy

rhubarb

buttermilk

lovage

roasted beef

brandy

chicken

blue cheese

jasmine

shellfish

celery

lime peel oil

armagnac

squash
black currant

nutmeg

chervil

japanese plum

pea

whole grain wheat flour

mint

lime

roasted peanut

roasted pork

oat

tabasco pepper

feta cheese tequila

malt

wheat bread

soybean

citrus peel

wasabi

chickpea

lard

grape juice

green bell pepper

quince

mustard

beef

milk fat

tea

egg

sweet potato

strawberry juice

sesame seed

beef liver

beet

beer

oyster

geranium

peppermint oil

rosemary

mutton

tuna

gardenia

sunflower oil

muscat grape
elderberry

mozzarella cheese

lingonberry

chicory

cured pork

chive

blackberry

rapeseed

coriander

lemon peel

mace

apple

porkkale

rye bread

liver

kidney bean

savory

beech

vanilla

grapefruit

fig

chamomile

cottage cheese

nectarine

cheese

pepper

rye flour

chicken broth

buckwheat

potato chip

blackberry brandy

pork sausage

soy sauce

grape

kelp

seaweed

meat

broccoli

maple syrup

orange peel

lilac flower oil

brussels sprout

wheat

angelica

rice

mackerel

peppermint

lobster

smoked sausage

octopus

radish

watercress

cereal
squid

olive oil

bitter orange anise

vegetable oil

cherry

artichoke

oatmeal
guava

roasted pecan

vinegar

violet

clam

sherry

turkey

chayote

Cytoscape:



Summary
• Basics


• file formats, code, databases

• Networks from data


• common tasks and good practices

• Case studies and examples

• Machine learning for data and networks

• Visualization (time permitting)



Challenges
• Hard to automate, generalize data analysis


• upstream tasks defining the network

• different fields have different needs


• Many tools, statistics, and algorithms—what to choose? standardize?

• Gap between models and data?

• Error analysis / Uncertainty quantification

• Big data:


• Gap between research and industry needs

• Graph databases—tech moving too quickly

• Visualizations (at scale)



Working with network data
Complex Networks 
Winter Workshop 

2021-01-05

Information and its role 
in social prediction 

Jim Bagrow

bagrow.com

Farrell Hall 
2017-03-29

james.bagrow@uvm.edu

The niversity
o ermont

U
Vf VERMONT

COMPLEX SYSTEMS CENTER

Information and its role 
in social prediction 

Jim Bagrow

bagrow.com

Farrell Hall 
2017-03-29

james.bagrow@uvm.edu

The niversity
o ermont

U
Vf VERMONT

COMPLEX SYSTEMS CENTER

Jim Bagrow 
james.bagrow@uvm.edu 

bagrow.com

mailto:james.bagrow@uvm.edu
http://bagrow.com


Working with network data
Complex Networks 
Winter Workshop 

2021-01-05

Information and its role 
in social prediction 

Jim Bagrow

bagrow.com

Farrell Hall 
2017-03-29

james.bagrow@uvm.edu

The niversity
o ermont

U
Vf VERMONT

COMPLEX SYSTEMS CENTER

Information and its role 
in social prediction 

Jim Bagrow

bagrow.com

Farrell Hall 
2017-03-29

james.bagrow@uvm.edu

The niversity
o ermont

U
Vf VERMONT

COMPLEX SYSTEMS CENTER

Jim Bagrow 
james.bagrow@uvm.edu 

bagrow.com

THANK YOU

mailto:james.bagrow@uvm.edu
http://bagrow.com

