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Abstract One of the key challenges in modeling the dynamics of contagion phenomena is
to understand how the structure of social interactions shapes the time course of a disease.
Complex network theory has provided significant advances in this context. However, aware-
ness of an epidemic in a population typically yields behavioral changes that correspond to
changes in the network structure on which the disease evolves. This feedback mechanism
has not been investigated in depth. For example, one would intuitively expect susceptible
individuals to avoid other infecteds. However, doctors treating patients or parents tending
sick children may also increase the amount of contact made with an infecteds, in an effort
to speed up recovery but also exposing themselves to higher risks of infection. We study the
role of these caretaker links in an adaptive network models where individuals react to a dis-
ease by increasing or decreasing the amount of contact they make with infected individuals.

We find that, for both homogeneous networks and networks possessing large topological
variability, disease prevalence is decreased for low concentrations of caretakers whereas a
high prevalence emerges if caretaker concentration passes a well defined critical value.

Keywords Complex networks · Adaptive networks · Social networks · Epidemics ·
Disease dynamics

1 Introduction

Physicists have taken numerous approaches to modeling infectious diseases, ranging from
simple, deterministic compartmental models that qualitatively describe disease dynamics in
single populations [4], to highly complex, stochastic metapopulation models that can ac-
count for the spread of emergent infectious diseases on a global scale [13, 14, 27]. Simple

C. Noble
Northwestern University, Evanston, IL 60208, USA

J.P. Bagrow · D. Brockmann (!)
Engineering Sciences and Applied Mathematics, Northwestern Institute on Complex Systems,
Northwestern University, Evanston, IL 60208, USA
e-mail: brockmann@northwestern.edu

James Bagrow

mailto:brockmann@northwestern.edu


C. Noble et al.

models, designed to investigate the basic mechanisms underlying disease dynamics, typi-
cally assume that a population is well-mixed, that interacting individuals are identical and
that stochastic effects are negligible [3, 9]. On the other hand, complex computational mod-
els are manufactured to predict the time-course of actual emergent infectious diseases such
as H1N1 in 2009 [5], SARS in 2003 [18] quantitatively. They typically take into account
data on social variability, age structure, spatial heterogeneity, seasonal variation of disease
dynamic parameters, multi-scale mobility networks, and account for stochastic effects. Both
classes of models fulfill equally important, complementary, but almost mutually exclusive
purposes.

Theoretical epidemiology experienced a major thrust with the advent of complex network
theory and its introduction into the field [1, 23]. The study of network properties substan-
tially advanced our understanding of disease dynamic phenomena on multiple levels [25].
On one hand, networks were used as a model for inter-individual relationships (social net-
works) [22]. On the other hand, the network approach was applied on a larger scale, model-
ing mobility and transport between populations [10, 18].

The use of network theoretical concepts allowed researchers to investigate how topolog-
ical properties of underlying networks shape the contagion processes that evolve on them
[7, 11, 19, 21, 28]. In the context of epidemiology, mapping structural features of networks
to properties of the spread of the disease substantially increased the predictive power of
models and our understanding of epidemic phenomena.

Although it is intuitive and plausible that network features determine the spread of a
disease, it is equally plausible that an epidemic reshapes the structure of the underlying
networks. For example, in response to information on an ongoing epidemic, people may
change their behavior. They may decide to wear face masks, avoid contacts, and travel less.
Surprisingly, this feedback mechanism has been neglected even in some of the most detailed
and sophisticated modeling approaches [13, 14]. Topological properties of social networks
affect disease dynamics, and the disease then feeds back to change the topology of the
network. In order to understand the dynamics of contagion phenomena in a population, it is
vital to understand the consequences of this feedback mechanism.

Networks that change their structure in response to their environment are called adap-
tive [8, 15, 17, 20]. In a recent study, Gross et al. proposed a simple adaptive network
scheme, based on a rewiring rule, to understand how individuals’ behavioral changes im-
pact on the time course of an epidemic. In this model, susceptible individuals are allowed
to protect themselves from infection by rewiring their existing links [16]. Specifically, with
probability w a susceptible breaks the relationship with an infected person and forms a new
link to another, randomly selected susceptible. Despite the simplicity of this approach, the
mechanism can generate an abundance of interesting phenomena including hysteresis and
multi-stability.

Although this mechanism is attractive, the response to an ongoing epidemic in a popu-
lation has many facets. Not only do individuals avoid other infected individuals (negative
response). In many scenarios, individuals increase their interaction with infected individu-
als (positive response), particularly in hospital scenarios, and families in which individuals
adopt the role of a caretaker. Potentially, these positive responses can facilitate disease pro-
liferation in a population and yield a higher disease prevalence. However, caretaker activity
can have a positive effect on infected individuals, for example by increasing a person’s re-
covery rate. A key question is how these effects interact and under what circumstances care-
taker activity has a net positive or negative effect and how these effects play out in different
network topologies.

Here we propose and investigate these questions using an adaptive network model. We
consider two types of networks. First, the generic Erdös-Rényi (ER) random network with
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binomial degree distribution, where each pair of nodes is linked with constant probability
pER [12, 23]. We also consider Barabási-Albert scale-free (SF) networks with power law
degree distributions [6], which more closely mimic the heterogeneity in social interactions.
Dynamics on scale-free networks have a number of important properties. For instance, they
lack epidemic thresholds and are immune to random immunization due to strong connec-
tivity fluctuations [6, 23–26]. Thus diseases on scale-free networks are difficult to avoid,
and once they take hold, they are difficult to eradicate. For both classes of networks we
observe a critical caretaker proportion which minimizes disease severity and beyond which
additional caretakers increase disease prevalence. However, the parameter regime for which
the right amount of care-takers yields disease extinction is much smaller in Barabási-Albert
networks. We use ER and SF networks with the same average degree.

2 Model description

We consider a network with a constant number of nodes N , representing individuals in a
population. Each node is either susceptible (S) or infected (I ). We denote the state variable
of node i by xi = 0 or xi = 1, corresponding to states S or I , respectively. A pair (i, j) of
nodes share a weighted symmetric link wij ≥ 0 representing their contact rate. Note that in
general these contact rates can have any real non-negative value, unlike network models that
are based on binary interactions. Susceptible nodes can become infected, and infected nodes
can then become susceptible again upon recovery. This is the well-studied SIS (susceptible-
infected-susceptible) model [2]. We also consider the SIR (susceptible-infected-recovered)
model where infected individuals become immune to the disease upon recovery. Each link
is designated either caretaker (C) or regular (R), and the fraction of C links is denoted pc .
We denote this signature of a link by σij = 1 if the link is a caretaker link and σij = −1
if it is regular. These two classes represent different ways of responding to an epidemic.
Caretaker relationships cause nodes to increase their contact frequency wij if an attached
node is infected, while regular relationships cause nodes to avoid each other (decreasing
contact rates) as illustrated in Fig. 1a. At each time step a susceptible i can become infected
by one of its infected neighbors with a probability pi that increases with link weight. We
assume that:

pi = 1 − exp(−αiτ ) (1)

where τ is the propensity of disease transmission following a contact, and αi = ∑
j wij xj is

the susceptible’s contact rate with infecteds.
An infected individual i recovers with propensity βi which yields the probability of re-

covery

ri = 1 − exp(−βi ) (2)

We consider two scenarios: (1) Infected nodes recover at a uniform rate βi = β or (2) with
variable probability. In the latter case, caretaker relationships increase a node’s recovery
probability βi according to

βi = β0 + (β1 − β0)
σ n

i

σ n
0 + σ n

i

where β0 is the base recovery rate, and β1 the enhanced recovery rate induced by the ac-
tion of caretakers (Fig. 1b). The quantity σi represents the total exposure of an infected to
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Fig. 1 (a) An initial network with all nodes susceptible (left) has two caretaker links (green) and three regular
links (black). After the infection of the central node (shown by change to red color), regular-linked nodes
react by “avoiding” the infected node (represented here by increasing distance). Caretaker-linked nodes, on
the other hand, react by further increasing contact rates (represented here by decreasing distance). (b) Another
network consists of two clusters around two central infected nodes (red). When considering the “caretaker
effect”, the more caretaker interactions (green) a node is exposed to, the greater its recovery rate (shown by
node size; larger nodes have faster recovery rates). Thus after a time step, the lower infected node is more
likely to recover, shown by its transition to susceptible status (blue) (Color figure online)

caretakers and is given by

σi = 1
2

∑

j

wij (1 + σij ),

thus σi is the total weight of caretaker interactions that node i experiences. The parameter
σ0 sets the scale for this exposure. The shape of the sigmoid curve can be controlled by the
exponent n.

The infectious state of the system is defined by the states xi of each node. We model the
adaptive nature of the network weights wij according to

δtwij = µσij (xi + xj ) − γ
(
wij − w0

ij

)
. (3)

Here the first term acts as the driving force of weight change, governed by the rate parameter
µ. If a link is a caretaker link (σij = 1), and one of the adjacent nodes is infected (xi = 1 or
xj = 1), this term is positive and causes the weight to increase (if both nodes are infected
the change is additive). Regular links (σij = −1), on the other hand decrease in strength if
one of the connected nodes is infected. The second term acts as a restorative force, governed
by the rate parameter γ # µ. Because we investigate a system in discrete time we use the
following update rule for the weights:

wij (t + 1) = wij (t) exp
[
µσij (xi + xj )

− γ
(
wij (t) − w0

ij

)]
, (4)
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Fig. 2 Infected density
(I∗ = I/N ) for SIS dynamics as
a function of time for different
caretaker proportions pc , where
caretakers do not improve
recovery. Erdös-Rényi networks
with adaptive rewiring were used
(solid lines), as well as a similar
static network (no rewiring,
dashed line). Solid lines were
obtained by averaging over 100
simulations, so a
single-simulation plot is overlaid
in each adaptive scenario for
reference. The plot corresponds
to I0 = 102, N = 103,
pER = 0.008, µ = 0.05,
γ = 0.037, β = 0.15, τ = 0.18

a discrete time reformulation of Eq. (3). These adaptive mechanisms are deterministic, while
most existing models consider stochastic adaptation, and allows for efficient simulation
compared with typical stochastic mechanisms. Likewise this model incorporates weighted
links while previous models focus mainly on unweighted networks.

3 Results

We first consider SIS dynamics. At each time step, a randomly chosen node i can transi-
tion from S to I with probability pi , or from I to S with probability ri as given above. To
study the effect of adaptive rewiring, we first consider a system without the caretaker effect
on the recovery rate, i.e. β1 = β0. Caretakers only increase their interaction with infected
individuals. We consider a network with weights initially distributed uniformly between 0
and 1. Results are shown in Fig. 2. In the absence of caretaker links (pc = 0), the equilib-
rium endemic state I ∗ = It /N is much lower than compared to the static network (without
rewiring). This is expected, as only regular (negative) interactions exist that decrease in
response to the epidemic. The total network weight adapts to a smaller value, decreasing
the endemic state. The dynamics of the disease and adaptation of the network is visible in
the damped oscillation of the fraction of infecteds. This is unusual as SIS models do not
typically oscillate.

However, as the fraction of caretakers is increased, diseases can attain higher endemic
states than their static network counterparts. The caretaker dynamics increases the interac-
tion rate with infecteds, effectively yielding a higher disease prevalence, which is expected.

The system that lacks a positive caretaker effect represents a somewhat artificial limiting
case. We therefore consider a positive caretaker effect: caretaker relationships lend higher
recovery rates β1 > β0 to infected individuals, see Eq. (2). In particular, we consider the
effect of varying the maximum recovery rate β1 and the fraction of caretaker links pc on the
extinction probability pext of the disease. (We measure pext as the fraction of Monte Carlo
realizations that finish with an empty infecteds compartment.) The results are depicted in
Figs. 3 and 4. In general, increasing β1 yields higher extinction, since caretaker links are
more effective at raising recovery rates. One would then expect that increasing the care-
taker proportion pc would also yield higher extinction, as more relationships would cause
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Fig. 3 Extinction probability
pext for SIS dynamics as a
function of caretaker proportion
pc for various values of β1 in an
Erdös-Rényi network. Note that
extinction is maximized at
pc ≈ 0.1 with a weak
dependence on β1. Approaching
this value from the left yields a
gradual increase in extinction,
while increasing pc past this
critical value causes a rapid
decrease in pext . The plot
corresponds to I0 = 102,
N = 103, µ = 0.05, γ = 0.037,
τ = 0.18, β0 = 0.35,
σ0 = 〈σi 〉|t=0, pER = 0.008

increasing recovery rates. However, this is not necessarily the case. Raising the caretaker
proportion past some β1-dependent critical value allows diseases to persist. This critical
value also serves as a threshold, as increasing pc above this value rapidly decreases the
extinction probability to 0. This is illustrated in Fig. 3. Increasing pc at first yields an in-
creased pext until a maximum is reached. A further increase leads to a rapid decrease in
extinction probability. For the Erdös-Rényi network, the critical fraction of caretakers is ap-
proximately pc ≈ 10 %. For pc values above or below this, high extinction probability is
seen only for very high values of β1. Note however, that even for very small fractions of
caretakers, a substantial increase in extinction probability is observed. This suggests that, if
the caretaker-effect is taken into account, the best strategy to extinguish a disease is the ex-
istence of a few effective caretaker relationships, that safely avoids the negative effects that
emerge beyond the critical concentration. Note also that for non-vanishing pc , guaranteed
extinction (pext = 1) is observed only for very high values of β1.

Note that these results were obtained for an Erdös-Rényi network. In order to investigate
the interaction of network adaptation in combination with strong network heterogeneity, we
investigated the dynamics in a scale free (SF) topology. The results are also depicted in
Fig. 4.

On these SF networks, we observe results quite similar to the ER system (also shown
in Fig. 4). However, for a given β1 in the SF system, the range of caretaker concentrations
that yield extinction is much smaller than that observed for the ER system. In addition, for a
given caretaker concentration, much higher values of β1 are needed to yield extinction. Thus
in SF systems, caretakers are largely ineffective except in finely-tuned concentrations with
very high values of β1. This contrasts with caretakers in ER systems which show positive
effects for a large range of concentrations and β1 values.

To explain these results, consider a susceptible node i and its total rate of interaction with
infected neighbors:

ΦSI(i) =
∑

j

wij xj .
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Fig. 4 Two-parameter phase diagrams showing extinction probability for SIS dynamics as a function of
maximum caretaker effectiveness β1 and caretaker proportion pc . Erdös-Rényi (left) and Barabási-Albert
Scale-Free networks (right) were considered. In the black regions, extinction probability is 0 while extinction
probability is 1 in the white regions. The plots suggest that increasing the caretaker proportion past a critical
value yields a decreased extinction probability in both networks. We also see that pc ≈ 10−1 yields maximum
disease extinction probability. The plots correspond to I0 = 102, N = 103, µ = 0.05, γ = 0.037, τ = 0.18,
β0 = 0.35, σ0 = 〈σi 〉|t=0 if 〈σi 〉|t=0 > 0 otherwise βi = β0, and a mean degree k0 = 4 for both Erdös-Rényi
and Scale-Free networks

The ratio of SI interaction rates and total equilibrium interaction rate α0 = 〈∑i<j wij 〉 is
given by

αSI = 1
α0

∑

i

ΦSI(i)(1 − xi).

Averaging this measure over the time-course of a disease gives us a measure of the typical
fraction of contacts due to SI interaction:

〈αSI〉 = 1
T α0

∫ T

0
dt

[∑

i,j

(1 − xi)wij xj

]
.

Now consider this time averaged 〈αSI〉 as a function of pc for various values of β1, see Fig. 5.
For β1 = β0 (i.e. no caretaker effect on recovery rates), the rate of SI interactions increase
steadily as pc is increased, yielding a more stable endemic state and high prevalence. When
the caretaker effect is taken into account, we observe an initial decrease of SI interactions.
Increasing pc further can result in increasing SI interactions, entering a regime in which a
large fraction of caretaker links results in a negative effect.

Note that, for all scenarios pictured in Fig. 5, the SI contact fraction is higher in the
SF system than its ER counterpart. Perhaps there exists some SI contact threshold above
which diseases are able to persist. Then we see in Fig. 5 that simply more scenarios surpass
this threshold in the SF system than the ER system, certainly consistent with and possibly
explaining our results in Fig. 4.

Next we turn our attention to the effect of caretaker adaptive networks on systems that
are better described by SIR dynamics. Here individuals (nodes) exist in one of three states,
susceptible (S), infected (I ) or recovered (R). Individuals can transition from S to I with
probability pi and from I to R with probability ri , as given above in Eqs. (1) and (2). The
state R is absorbing, so once all infected nodes in a population recover, the disease dies out
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Fig. 5 Time-averaged SI contact fraction 〈αSI〉 for SIS dynamics with different values of the caretaker pro-
portion pc . Three β1/β0 values were chosen to correspond with low, intermediate, and high traces in the
phase diagram of Fig. 4. An Erdös-Rényi network was used (left), as well as a Scale-Free network (right).
The plots correspond to I0 = 102, N = 103, µ = 0.05, γ = 0.037, τ = 0.18, β0 = 0.35, σ0 = 〈σi 〉|t=0 if
〈σi 〉|t=0 > 0 otherwise βi = β0, and a mean degree k0 = 4 for both Erdös-Rényi and Scale-Free networks

(see Fig. 6). In order to investigate the impact of caretaker dynamics and an SIR scenario,
we focus on the attack rate (ratio) and the epidemic peak. The attack rate (AR) is simply the
fraction of the population which contracts the infection at some point during the epidemic.
Since every infected node eventually enters the recovered class, this is equivalent to the
fraction of recovered nodes at the end of the epidemic:

AR = R∞
N

The epidemic peak (EP) is the maximum infected fraction attained in the population over
the course of the epidemic. Figure 7 depicts the attack rate as a function of pc for various
values of the recovery rate parameter β1. Interestingly, without a caretaker effect (β1 = β0)
the increase in attack rate is not substantial as pc is increased, implying that adaptation alone
plays a minor role in SIR dynamics on ER networks. For β1 > β0, we observe a decrease in
attack rate even for small fractions of caretaker links. The minimum attack rate is attained
only in a regime where most links are caretaker links.

Figure 8 depicts the attack rate as a function of both system parameters β1 and pc and
compares the behavior in both network architectures, Erdös-Rényi and Barabási-Albert. In
contrast with the SIS system, network topology does not substantially change the dynamics,
both networks exhibit a similar attack rate as a function of β1 and pc . For fixed β1 increasing
pc first decreases the attack rate until a minimum is attained. Increasing pc further increases
the attack rate again.

The dynamics seen for the attack rate are mirrored in the epidemic peak EP as well
(Fig. 9), which decreases as caretaker effectiveness (represented by β1) increases. There is
again a critical relationship with pc , as values of pc ≈ 0.2 tend to minimize the epidemic
peak for β1 > β0. Again though, for β1 = β0, increasing pc yields a monotonic increase
in EP.

4 Conclusions

Individual response can have a great impact on the dynamics of spreading diseases on com-
plex networks. In particular, allowing individuals (caretakers) to become closer to infecteds
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Fig. 6 Infected density (I∗ = I/N ) for SIR dynamics as a function of time for different caretaker proportions
pc . Erdös-Rényi networks with adaptive rewiring were used, as well as a similar static network (no rewiring,
dashed line). Note that increasing pc increases disease severity, in particular increasing both the epidemic
peak and attack rate. This is as expected because caretakers have no positive effect. Note also that the static
network corresponds roughly to the half caretaker/half regular scenario. In this scenario the harm caused by
caretakers approaching infecteds is roughly offset by regulars avoiding infecteds, rendering the system similar
to the static network. The plots correspond to I0 = 25, N = 103, µ = 0.05, γ = 0.037, τ = 0.45, β0 = 0.20,
σ0 = 〈σi 〉|t=0 if 〈σi 〉|t=0 > 0 otherwise βi = β0, n = 2, pER = 0.008 (Erdös-Rényi). Scale-Free network
results were similar

Fig. 7 Attack rate AR as a
function of pc for SIR dynamics
with various values of β1 in an
Erdös-Rényi network. For each
β1 > β0, the attack rate is
minimized for some value of pc
between 10−1 and 100. As β1
increases, this minimum point
shifts subtly to the right. This
shows that the more effective
caretakers are at healing, the
more caretaker relationships the
system can permit before they
have a negative impact on the
attack rate. The plots correspond
to I0 = 25, N = 103, µ = 0.05,
γ = 0.037, τ = 0.25, β0 = 0.20,
σ0 = 〈σi 〉|t=0 if 〈σi 〉|t=0 > 0
otherwise βi = β0, n = 2,
pER = 0.008

is a calculated risk. If the caretakers are not effective healers (such as non-physician parents
and children), then the severity of the disease generally increases. But if the caretakers are
effective healers (consider doctor/patient relationships, for example), then the outcome of
the disease can be improved even by a small number of them. If too many caretakers are
introduced, though, their healing benefit is overridden by their increased exposure, yielding
a worse outcome than if the population had simply not reacted.
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Fig. 8 Two-parameter phase diagrams showing the dependence of attack rate in SIR dynamics on maximum
caretaker effectiveness β1 (normalized by the baseline-recovery probability β0) and caretaker proportion pc .
Erdös-Rényi (left) and Scale-Free (right) networks were considered. Attack rate approaches zero in the white
regions, while it approaches 1 in the black regions. Note that increasing pc yields lower attack rates for
pc < 0.2, but increasing past this critical value yields increasing attack rates. There is a critical value pc ≈ 0.2
at which attack rate is minimized for most values of β1. Furthermore, this effect is seen in both ER and SF
networks, though attack rates are lower overall on the SF network. The plots correspond to I0 = 25, N = 103,
µ = 0.05, γ = 0.037, τ = 0.25, β0 = 0.20, σ0 = 〈σi 〉|t=0 if 〈σi 〉|t=0 > 0 otherwise βi = β0, n = 2, and a
mean degree k0 = 4 for both Erdös-Rényi and Scale-Free networks

Fig. 9 Two-parameter phase diagrams showing the dependence of the epidemic peak (EP) in SIR dynamics
on the maximum caretaker effectiveness β1 (normalized by the baseline-recovery probability β0) and care-
taker proportion pc . Erdös-Rényi (left) and Scale-Free (right) networks were considered. The epidemic peak
approaches zero in the white regions, while it approaches 1 in the black regions. Note the similarities to the
attack rate diagram in Fig. 8. The epidemic peak is minimized for pc ≈ 0.2 for most values of β1, but for
pc < 0.2 or pc > 0.2, the attack rate is greater for a given value of β1. The plots correspond to I0 = 25,
N = 103, µ = 0.05, γ = 0.037, τ = 0.40, β0 = 0.20, σ0 = 〈σi 〉|t=0 if 〈σi 〉|t=0 > 0 otherwise βi = β0,
n = 2, and a mean degree k0 = 4 for both Erdös-Rényi and Scale-Free networks

These findings have a number of implications in public health. For one, in a large-scale
epidemic there certainly exists a critical fraction of doctors and aid workers in the popula-
tion. If there are too few or too many, they can actually increase the total number of individ-
uals infected over the course of the disease. Furthermore, diseases become more sensitive
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to this critical fraction as interaction variability increases among the underlying population.
And since social networks tend to display high interaction variability, real-world diseases
should be particularly sensitive to this critical fraction. Thus in the face of an epidemic,
fighting infection with caretakers likely will not be more effective than employing a natural
avoidance strategy unless public health officials can precisely determine the optimal fraction
of doctors and aid workers for their population.
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