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Abstract

Modern society depends on the flow of information over online social networks, and users of popular platforms

generate significant behavioral data about themselves and their social ties [1, 2, 3, 4, 5]. However, it remains unclear

what fundamental limits exist when using these data to predict the activities and interests of individuals, and to what

accuracy such predictions can be made using an individual’s social ties. Here we show that 95% of the potential

predictive accuracy for an individual is achievable using their social ties only, without requiring that individual’s

data. We use information theoretic tools to estimate the predictive information within the writings of Twitter users,

providing an upper bound on the available predictive information that holds for any predictive or machine learning

methods. As few as 8-9 of an individual’s contacts are sufficient to obtain predictability comparable to that of the

individual alone. Distinct temporal and social effects are visible by measuring information flow along social ties,

allowing us to better study the dynamics of online activity. Our results have distinct privacy implications: information

is so strongly embedded in a social network that in principle one can profile an individual from their available social

ties even when the individual forgoes the platform completely.

The flow of information in online social platforms is now a significant factor in protest movements, national

elections, and rumor and misinformation campaigns [6, 7, 8]. The study of social contagion [9], for example, is

predicated on the flow of information over social ties, and has benefited greatly from the availability of massive online

social datasets and platforms on which to perform observational and experimental studies [10,11]. Data collected from

online social platforms are a boon for researchers [2] but also a source of concern for privacy, as the social flow of

predictive information can reveal details on both users and non-users of the platform [5,12,13]. Measuring information

flow is challenging, in part due to the complexity of natural language and in part due to the difficulty in defining a
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quantitative and objective measure of information. Owing to these challenges, proxies are often studied instead:

structural proxies focus on network characteristics such as the movements of keywords [4, 7, 14, 15] or adoptions of

behaviors [16, 17, 18]. Temporal proxies attempt to quantify the information contained in the timings of user activity,

as temporal relationships between user activity are known to reflect underlying coordination patterns [19, 20].

However, neither of the above approaches consider the full extent of information available: both the complete

language data provided by individuals and their temporal activity patterns. Although, for example, temporal proxies

are necessary in social networks where time series data are available but message content is not, for privacy or other

reasons (for example, in mobile phone datasets), public postings to online social platforms present a unique opportunity

to explore the textual content of messages in conjunction with their timings, giving a richer understanding of social

ties.

Information theory allows us to mathematically quantify the information contained within data, and is well suited

to data in the form of online written communication. Although the mathematical definition of information is somewhat

distinct from our commonly held notions of information and meaning, or semantics, information-theoretic measures

are crucial for understanding how algorithms can learn from data. Nowadays, with such large volumes of data gener-

ated by online social platforms, both researchers and platform providers are often forced to interact with a platform’s

data only computationally, using algorithms to quantify and make inferences about users, and the accuracy of these

inferences is predicated on the mathematical information contained within a user’s data.

In this work, we apply information-theoretic estimators to study information and information flow within a collec-

tion of Twitter user activities. These estimators fully incorporate language data while also accounting for the temporal

ordering of user activities. We find that meaningful predictive information about individuals is encoded in their social

ties, allowing us to determine fundamental limits of social predictability, independent of actual predictive or machine

learning methods. We explore the roles of information recency and social activity patterns, as well as structural net-

work properties such as information homophily between individuals.

We gathered a dataset of N = 13, 905 users, comprising egocentric networks from the Twitter social media plat-

form, and a total of m = 30, 852, 700 public postings from these users. Each of the n = 927 ego-networks consisted

of one user (the ego) and their 15 most frequently mentioned Twitter contacts (the alters), providing us with ego-alter

pairs on which to measure information flow. See ‘Data collection and filtering’ in the Methods section for full details

on the data processing.

The ability of a machine learning method to accurately profile individuals from their online traces is reflected in

the predictability of their written text. Indeed, with a language model trained to predict the words a user will post

online, in principle, one can construct a profile of the user by evaluating the likelihoods of various words to be posted,
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such as terms related to politics. Thus, quantifying the predictive information contained within a user’s text allows us

to understand the potential accuracy such methods can potentially achieve given a user’s data.

A text’s predictive information can be characterized by three related quantities, the entropy rate h, the perplexity

2h, and the predictability Π. The entropy rate quantifies the average uncertainty one has about future words given the

text one has already observed (Fig. 1a). Higher entropies correspond to less predictable text and reflect individuals

whose interests are more difficult to predict. In the context of language models, it is also common to consider the

perplexity. Whereas the entropy rate specifies how many bits h are needed on average to express subsequent unseen

words given the preceding text, the perplexity tells us that our remaining uncertainty about those unseen words is

equivalent to that of choosing uniformly at random from among 2h possibilities. For example, if h = 6 bits (typical

of individuals in our dataset), the perplexity is 64 words, which is a significant reduction from choosing randomly

over the entire vocabulary (social media users have ≈5000-word vocabularies on average; see Supplementary Note

1.3 for full distributions). Finally, the predictability Π, given via Fano’s inequality [21], is the probability that an

ideal predictive algorithm will correctly predict the subsequent word given the preceding text. Repeated, accurate

predictions of future words indicate that the available information can be used to build profiles and predictive models

of a user’s writing (see also below for subsequent discussion), and estimating Π allows us to fundamentally bound

the usefulness of the information present in a user’s writing without depending on the results of specific predictive

algorithms. We emphasize that the information-theoretic predictability as defined here is distinct from prediction, in

that it does not actually make predictions about future text. Instead, this predictability provides a method-independent

upper bound on prediction accuracy.

Information theory has a long history of estimating the mathematical information content of text [22, 23, 24, 25].

Crucially, information is present not just in the words of the text but also in their order of appearance. Thus, we

applied a nonparametric entropy estimator that incorporates the full sequence structure of the text [25]. This estimator

has been proved to converge asymptotically to the true entropy rate for stationary processes and has been applied to

human mobility data [26]. See ‘Measuring the flow of predictive information’ and ‘Estimator convergence on our

data’ in the Methods section for further details on the entropy estimators and their convergence rates on these data.

We focus on four aspects of information flow over social networks, exploring both content and timing of messages:

(i) the extent to which information is encoded through language into an individual’s social ties, (ii) the importance

of recency to information flow between individuals, (iii) the role of tie strength between individuals in the flow of

information, and (iv) the relationship between structural network properties such as homophily and information. We

first examined the information content of the egos themselves. Their text streams were relatively well clustered around

h ≈ 6.6 bits, with most falling between 5.5–8 bits (Fig. 1b). Equivalently, this corresponds to a perplexity range of
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Figure 1: Information and predictability in online social activity. a, A user posts written text over time and we would predict
their subsequent words given their past writing. Treating each user’s posts as a contiguous text stream, the entropy rate tells us how
uncertain we are about a user’s future writing given their past. To study information flow, the cross-entropy rate tells us how much
information about the future text of one user (the ego, blue) is present in the past text of another user (the alter, orange). b, Most
users have entropies and predictabilities (blue) in a well-defined range, whereas the cross-entropies and associated predictabilities
(orange) indicate a broad variety of social information flow levels. c, Predictive information may be available in the pasts of multiple
alters, so we computed the cumulative cross-entropy as we included more alters in order of most to least frequently contacted. d, As
the past activities of more alters are used to predict the ego, more information is available and the entropy drops and predictability
rises (orange). Including the ego’s past with the alters (blue) shows that the alters provided non-redundant predictive information.
e, Extrapolating beyond our data window estimates the prediction limit Π∞ of online activity. Error bars denote mean ± 95% CI.

≈45–256 words, far smaller than the typical user’s ≈5000-word vocabulary, and a mean predictability of ≈53%, quite

high for predicting a given word out of ≈5000 possible words on average (for example, choosing words uniformly

at random corresponds to a predictability of 0.02%). We found this typical value of information comparable to other

sources of written text, but social media texts were more broadly distributed around the mean—individuals were more

likely to be either highly predictable or highly unpredictable compared with formally written text (see Supplementary

Note 1.4).

Next, instead of using the entropy rate to ask how much information is present in what the ego has previously

written regarding what the ego will write in the future, we now ask how much information is present on average in

what the alter has previously written regarding what the ego will write in the future (Fig. 1a). If there is consistent,

predictive information in the alter’s past about the ego’s future, especially beyond the information available in the

ego’s own past, then there is evidence of predictive information flow.
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Replacing the ego’s past writing with the alter’s past converts the entropy to the cross-entropy (see ‘Measuring the

flow of predictive information’ and ‘Estimator convergence on our data’ in the Methods section). The cross-entropy

is always greater than the entropy when the alter provides less information about the ego than the ego, and so an

increase in cross-entropy tells us how much information we lose by only having access to the alter’s information

instead of the ego’s. Indeed, estimating the cross-entropy between each ego and their most frequently contacted alter

(Fig. 1b), we saw higher cross-entropies than using the ego’s own text, spanning from 6–12 bits compared with 5–

9 bits (equivalently, perplexities from 64–4096 words compared with 32–512 words, or predictabilities spread from

0–60% compared with 40–70%). Whereas less frequently contacted alters provided less predictive information than

alters in close contact (see Supplementary Notes 1.6 and 1.7), even for the closest alters there was a broader range of

cross-entropies than the entropies of the egos themselves. This implies a diversity of social relationships: sometimes

the ego is well informed by the alter, leading to a cross-entropy closer to the ego’s entropy, whereas other times the

ego and alter exhibit little information flow.

Thus far we have examined the information flow between the ego and individual alters, but actionable information

regarding the future of the ego may be embedded in the combined pasts of multiple alters (Fig. 1c). To address this,

we generalized the cross-entropy estimator to multiple text streams (see ‘Measuring the flow of predictive informa-

tion’ and ‘Estimator convergence on our data’ in the Methods section). We then computed the cross-entropies and

predictabilities as we successively accumulated alters in order of decreasing contact volume (Fig. 1d). As more al-

ters were considered, cross-entropy decreased and predictability increased (Spearman’s ρ = −0.505 95% CI [-0.517,

-0.492], p < 0.001 and ρ = 0.527 [0.515, 0.540], p < 0.001, respectively), which is sensible as more potential infor-

mation is available. Interestingly, with 8–9 alters, we observed a predictability of the ego given the alters at or above

the original predictability of the ego alone—with 10 alters, the predictability was significantly greater than that of the

ego alone (two-tailed test, t(1852) = −3.32, p < 0.001). As more alters were added, up to our data limit of 15 alters,

this increase continued. Paradoxically, this indicated that there is potentially more information about the ego within

the total set of alters than within the ego itself.

To understand this apparent paradox, we need to address a limitation with the above analysis: it does not incorpo-

rate the ego’s own past information. It may be that the information provided by the alters is simply redundant when

compared to that of the ego. To see whether this is the case, we simply included the ego’s past alongside the alters,

generalizing the estimator to an entropy akin to a transfer entropy [27,28], a common approach to studying information

flow. This entropy is computed in the ‘Alters and ego’ curves in Fig. 1d. A single alter provided a small amount of

extra information beyond that of the ego, 1.9% more predictability. This value provided us a quantitative measure of

the extent of information flow between individual users of social media. Beyond the most frequently contacted alter,
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as more alters were added, this extra predictability grew: at 15 alters and the ego there was 6.9% more predictability

than via the ego alone. Furthermore, the information provided by the alters without the ego is strictly less than the

information provided by the ego and alters together, resolving the apparent paradox.

However, this extra predictability also appeared to saturate, and if so then eventually adding more alters will not

provide extra information (see Supplementary Note 1.2). This observation is compatible with Dunbar’s number which

uses cognitive limits to argue for an upper bound on the number of meaningful ties that an ego can maintain (≈150

alters for humans) [29]. Thus, the question becomes: given enough ties, what is the upper bound for predictability?

To extrapolate beyond our data window, we fitted a nonlinear saturating function to the curves in Fig. 1d, (see Sup-

plementary Note 1.2 for details and validation of our extrapolation procedure). From fits to the raw data extrapolated

to infinity, we found a limiting predictability given the alters of Π∞ = 60.8%±0.691% (95% CIs) (Fig. 1e). Of course,

egos will not have an infinite number of alters, so a more plausible extrapolation point may be to Dunbar’s number:

Π150 = 60.3%, within the margin of error for Π∞, indicating that saturation of predictive information has been reached.

Similarly, extrapolating the predictability including the ego’s past gives Π∞ = 64.0% ± 1.54% (Π150 = 63.5%).

These extrapolations showed that significant predictive information was available in the combined social ties of

individual users of social media. In fact, there is so much social information that an entity with access to all social

media data will have only slightly more potential predictive accuracy (≈64% in our case) than an entity that has

access to the activities of an ego’s alters but not to those of that ego (≈61%). This may have distinct implications for

privacy: if an individual forgoes using a social media platform or deletes their account, yet their social ties remain,

then, potentially, that platform owner still possesses 95.1%± 3.36% of the achievable predictive accuracy of the future

activities of that individual.

Two issues can affect the cross-entropy as a measure of information flow. The first is that the predictive information

may be due simply to the structure of English: commonly repeated words and phrases will represent a portion of the

information flow. The second is that of a common cause: egos and alters may be independently discussing the same

concepts. This is particularly important on social media with its emphasis on current events [3].

To study these issues, we constructed two types of controls. The first randomly pairs users together by shuffling

alters between egos. The second constructed pseudo-alters by assembling, for each real alter, a random set of posts

made at approximately the same times as the real alter’s posts, thus controlling for temporal confounds. See ‘Control

procedures’ in the Methods section for more information. Both controls used real posted text and only varied the

sources of the text. As shown in Fig. 1d, the real alters provided more social information than either control. Although

there was a decrease in entropy as more control alters were added, the control cross-entropy remained above the real

cross-entropy (two-tailed test, t(23293) = −103.8, p < 0.001) and the control predictability remained below the real
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predictability (t(21103) = 119.0, p < 0.001). We also observed that, for a single alter, the temporal control had a

lower cross-entropy than the social control (t(23293) = −117.5, p < 0.001) and therefore temporal effects explain

more information than social effects (underscoring the role of social media as a news platform [3]), although both

controls eventually converge to a limiting predictability of 51.2%. This demonstrates that useful predictive information

is encoded in real social ties, beyond that expected from the structure of language alone.

Given the importance of temporal information in online activity, to what extent is this reflected in the information

flow? Do recent activities contain most of the predictive information or are there long-term sources of information?

To estimate recency effects, we applied a censoring filter to the ego’s text stream, removing at each time period the

text written in the previous ∆T hours and measuring how much the mean predictability decreased compared with the

mean predictability including the recent text. Increasing ∆T decreased Π, especially evident when removing the first

3–4 h worth of text (these intervals correspond to 6.2–7.8 tweets ignored per word on average; Fig. 2a): we found an

average decrease in predictability of 1.4% at 4 h. This 1.4% loss in predictability relative to the uncensored baseline is

comparable to the 1.9% gain from the rank-1 alter that we observed in Fig. 1d. In other words, close alters tended to

contain a quantity of information about the ego comparable to the information within just a few hours of the ego’s own

recent past. Beyond 24 h the predictability loss continued approximately linearly (visually; see Supplementary Note

1.5 and Supplementary Fig. 8). We also applied this censoring procedure to the alters alone and the alters combined

with the ego, excluding their recent text and measuring how the cross predictability changed on average from their

respective baselines. We found a similar drop in predictability during the first few hours (0.8% and 1.3% in the first

4 h given alters and alters plus ego, respectively), but then a more level trend than when censoring the ego alone (a

further decrease of 0.1% and 0.3%, respectively, between 4 and 24 h, compared with 0.4% for the ego alone over the

same interval). This leveling off showed that less long-term information was present in the alters’ pasts than within

the ego’s.

Next, we studied recency by the activity frequencies of alters and egos. Individuals who post frequently to social

media, keeping up on current events, may provide more predictive information about either themselves or their social

ties than other, infrequent posters. We found that the self-predictability of users was actually independent of activity

frequency (Supplementary Note 1.4), but there were strong associations between activity frequency and social infor-

mation flow: egos who posted 8 times per day on average were 17% ± 14.9% (95% CI) more predictable given their

alters than egos who posted once per day on average (Fig. 2b). Interestingly, this trend reversed itself when considering

the activity frequencies of the alters: alters who posted 8 times per day on average were 23% ± 4.46% less predictive

of their egos than alters who posted once per day on average. Both trends in Fig. 2b were significant (Spearman’s

ρ = 0.276 [0.216, 0.335], and ρ = −0.437 [-0.487, -0.383], respectively, p < 0.001; see Supplementary Note 1.6).
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Figure 2: Recency of information. a, Removing the most recent ∆T hours of activity, most predictive information about the ego
is contained in the most recent 3–4 h (shaded region, 1.4% drop). In all cases, information extends backwards beyond these time
intervals, but the ego (blue) contains more long-range past information (0.6% more predictability) than the combined alters alone
(orange, alters and ego green). b, Egos who post more frequently are 17%± 14.9% more predictable from their alter than egos who
post less frequently, whereas frequently posting alters provide 23% ± 4.46% less information about their egos than alters who post
less often. Lines in panel b denote a LOWESS fit. Error bars denote mean ± 95% CI.

Highly active alters tended to inhibit information flow, perhaps due to covering too many topics of low relevance to

the ego.

Information flow reflects the social network and social interaction patterns (Fig. 3). We measured information flow

for egos with more popular alters compared with egos with less popular alters. Alters with more social ties provided

less predictive information about their egos than alters with fewer ties (Fig. 3a). This trend was significant (Spearman’s

ρ = −0.199 [-0.224, -0.175], p < 0.001; see Supplementary Note 1.9). Qualitatively, the decrease in predictability

of the ego was especially strong up to alters with ∼400 ties, where the bulk of our data lies, but the trend continued

beyond this as well. This decreasing trend belies the power of hubs in many ways: although hubs strongly connect a

social network topologically [30], limited time and divided attention across their many social ties bound the hub alter’s

ability to participate in information dynamics mediated by the social network and this is reflected in the predictability.

Reciprocated contact is an important indicator of social relationships [31], especially in online social activity
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Figure 3: Social interactions are visible in information flow. a, Alters with more social ties of their own provided less infor-
mation about the ego than less popular alters (Spearman’s ρ = −0.199 [-0.224, -0.175], p < 0.001). b, Information flow captures
directionality in relationships, which is a key factor in social dynamics. Alters who often contact the ego provide more predictive
information about the ego than alters who rarely mention the ego (Spearman’s ρ = 0.226 [0.202, 0.250], p < 0.001). Yet, if the
ego frequently mentions the alter, it does not necessarily mean that the alter will provide more predictive information about the ego
(Spearman’s ρ = −0.0185 [-0.0440, 0.00704], p = 0.156). Lines denote a LOWESS fit. Error bars denote mean ± 95% CI.

where so much communication is potentially one-sided [3]. In Fig. 3b, we investigated how directionality in contact

volume, how often the ego mentions the alter and vice versa, related to information flow. We found that the ego was

more predictable given the alter for those dyads in which the alter more frequently contacted the ego (Spearman’s

ρ = 0.226 [0.202, 0.250], p < 0.001; see Supplementary Note 1.9), but there was little change across dyads when

the ego mentioned the alter more or less frequently (Spearman’s ρ = −0.0185 [-0.0440, 0.00704], p = 0.156; see

Supplementary Note 1.9). We also observed a similar trend for information flow but in reverse, when predicting the

alter given the ego (see Supplementary Note 1.9. These trends captured the reciprocity of information flow: an alter

frequently contacting an ego will tend to give predictive information about the ego, but the converse is not true: an

ego can frequently contact her alter but that does not necessarily mean that the alter will be any more predictive, as

evidenced by the relatively flat trend in Fig. 3b.

Finally, comparing the entropy of an ego with the entropy of their alters reveals a strong homophily effect in

terms of their (self) information (Fig. 4). The entropy rates of the ego and alter on a given dyad were correlated

(Fig. 4a). Figure 4a covers the correlation between the ego and the rank-1 alter (Spearman’s ρ = 0.440 [0.386, 0.490],
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Figure 4: An ‘information homophily’ between egos and alters. The entropies of egos and their alters are strongly correlated
(Spearman’s ρ = 0.440 [0.386, 0.490, p < 0.001), indicating a homophily effect. a, The entropy rate h of egos compared to the
entropy rate of their rank-1 (most frequently contacted) alter. The straight line y = x provides a guide for the eye. b, The Spearman’s
ρ between ego entropies and alter entropies as a function of alter rank; all plotted ρ are significant (p < 0.001). Correlation generally
decreases with alter rank. The dashed line indicates ρ across all ranks.

p < 0.001). In Fig. 4b, we plot the Spearman’s ρ between ĥ(ego) and ĥ(alter) as a function of alter rank. These

correlations were significant for all ranks (p < 0.001). The correlation drops consistently over the first five or so alters,

implying that the homophily effect is connected with contact volume. Interestingly, we see weaker associations in

cross-entropy (see Supplementary Note 1.8); further investigation of these and other information homophily effects

has the potential to improve our ability to control for homophily in order to explore social contagion.

The ability to repeatedly and accurately predict the text of individuals delivers considerable value to the providers

of social media, allowing providers to develop profiles to identify and track individuals [32, 33] and even manipulate

information exposure [34]. For example, a language model may be trained on available data to generate new text in the

“voice” of a user [35, 36, 37] and with such a language model one could derive a profile for the user by querying it for

the likelihood that the user will make certain kinds of statements (for example, how likely are certain statements about

one political party or another). Language models derived in this way can have important consequences: combining

predictions from a language model with an algorithm for recommending new social ties, for example, has the potential

to create or exacerbate filter bubbles [34]. The optimal accuracy a trained model can achieve when making these

text predictions is mathematically bounded by the predictive information that we estimate here. That information is

so strongly embedded socially underscores the power of the social network: by knowing who the social ties of an

individual are and what the activities of those ties are, our results show that one can, in principle, accurately profile

even those individuals who are not present in the data [5].

Experimental studies are crucial for improving on our results. For example, we have shown how a platform

provider can use information from a user’s social ties as a substitute for missing information from that user. Yet, in

reality, this substituted predictive information can become outdated as the social system and its members are not static
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entities but evolve over time. This evolution challenges prediction, as a user forgoing or deleting their account can

change a social tie’s future behavior, even if only through the fact of no longer interacting with that user, affecting

the future predictability of that user. Experiments can help understand the effects of this evolution on prediction.

Likewise, any research involving observational data, such as ours, will have difficulty distinguishing social contagion

from homophily [16, 38]. Our focus on predictive information flow is one of the strongest measures possible given

the text data that we study, in that we explicitly utilize the time ordering of information when calculating cross-

entropy. However, information flow alone is not sufficient evidence of contagion. To establish contagion would

require controlling for the tendency of similar alters to share ties, which the present study provides a first step towards.

Of course, the gold standard for causal influence remains experimental interventions. Such experimental studies are

ideal for studying both dynamic social effects and contagion phenomena.

The time-ordered cross-entropy (Fig. 1a) applied here to online social activity is a natural, principled information-

theoretic measure that incorporates all of the available textual and temporal information. Although weaker than full

causal entailment, by incorporating time ordering, we identify social information flow as the presence of useful,

predictive information in the past of one’s social tie beyond that of the information in one’s own past. Doing so closely

connects this measure with Granger causality and other strong approaches to information flow [27, 39].

Methods
Data collection and filtering We selected a random sample of individuals for study from the Twitter 10% Gardenhose feed
collected during the first week of April 2014. From this, we uniformly sampled individuals who had tweeted in English (as reported
by Twitter in the metadata for each tweet) during this time period and had 50–500 followers, as reported in the feed metadata. The
lower follower cutoff is to avoid inactive and bot accounts, whereas the higher cutoff is to ensure that individuals in our sample
have comparably sized ego-networks and to avoid studying unusually popular outlier accounts, such as celebrity accounts. We
remark that generating a sample from the 10% feed necessarily introduces a small bias towards more active individuals, those who
have tweeted at least once into that feed. For each user, we then collected their complete public tweet history excluding retweets
(up to 3200 most recent public messages, as allowed by Twitter’s Public REST API limit [40]). As discussed later in this section,
we then applied to these users a filtering procedure, including both computational tools and human raters to help ensure sufficient
data on individual activities and to limit bots and non-individual accounts from our sample. When finished, we retained a final
sample of n = 927 individual egos and their top-15 alters (n = 13, 905 total users). For each initially sampled ego, we collected
the user IDs of the account whom the ego ‘at-mentioned’ most frequently in their public tweets, forming the rank-1 alter. Using
such mentions is of course not the only way to define a social tie on Twitter; follower relationships, numbers of retweets, or shared
textual features (such as hashtags or keywords) could all be reasonably employed to define a social network. However, defining
social ties using mentions gives a stronger signal than simply Twitter following, as it demonstrates active communication on the
behalf of at least one of the individuals of a social tie. Defining social ties as related to the number of mentions also captures a
degree of social closeness, whereas follower or following has no strength associated with it. As was done with the egos, the REST
API was then used to retrieve the complete public tweet history of this alter. Examining the messages of the (ego, rank-1 alter)
dyad, we retained egos where the ego’s tweets covered at least a 1-year period, the alter’s tweets covered at least a 1-year period,
and the ego at-mentioned at least 15 unique Twitter users (including the rank-1 alter). For dyads who satisfied these criteria, we
collected the full public messages of the remaining 14 most at-mentioned alters, giving us the full public activities of the ego and
their top-15 most mentioned alters.

To limit the effects of bots and non-personal accounts, we moved beyond the basic filtering criteria listed above and employed
both computational tools and human raters to examine the accounts of the egos in our dataset. These tools were applied in April
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2017. A small number of accounts in our sample were suspended or deleted after our data collection period and were not available
online to be examined, so we simply retained these unrated accounts in our sample. We used the botometerAPI [41, 42, 43, 44, 45]
to score the probability that an ego account was a bot, and eliminated n = 46 accounts that scored above 50%. This tool examines
Twitter accounts along several dimensions to estimate the likelihood that the account belongs to a bot. Next, we asked human raters
to examine the accounts and report whether the account appeared to belong to a real person or a non-personal entity, such as a
corporation or a bot. Two independent raters examined each account’s Twitter homepage if available. We removed n = 84 accounts
for which both raters agreed that the account did not belong to an individual, beyond those already flagged by the botometer scores.
Raters were recruited on Amazon Mechanical Turk and compensated at a rate of US$0.10 per three Twitter accounts. Finally, we
also removed a small number of accounts (n = 31) showing convergence issues with our entropy estimators, as inferred by negative
Kullback–Leibler divergences from the ego to the alter or vice versa. This gave our final sample size of n = 927 egos and their
top-15 associated alters, comprising m = 30, 852, 700 total tweets.

Control procedures We performed two controls for the cross-entropy experiments: random tweets or ‘temporal control’ and
random alters or ‘social control’. For the temporal control, we constructed proxy tweet streams for the alters that preserved the
approximate times at which alters had written messages. To do this, we substituted for each real alter tweet a randomly sampled
English-language tweet posted during the same hour as the real alter tweet. The randomly sampled replacement tweets were taken
from the 10% Gardenhose feed. In the social control, we randomized the ego networks, swapping the tweet text streams of true
alters with those of randomly chosen alters. This control does not preserve the times at which the original alters had authored
tweets, hence the use of the previous temporal control.

Text processing To apply the entropy estimators discussed below, we first need to process and tokenize the texts of users. The
UTF-8 encoded text of each user was processed by removing casing, punctuation (except for twitter specific “@” and “#” symbols),
and URLs (identified as words beginning with “http://” or “https://”). All tweet texts were concatenated into a single text string in
time order (based on the tweet timestamps), except for “retweets” which were all excluded in order to focus on the effect of shared
language and avoid artificially inflating predictability scores. The text was then tokenized into words by segmenting on whitespace.

Measuring information in written text The entropy (rate) h of a sequence of words is the number of bits needed to encode
the next word, on average, given past words. Kontoyianni et al. [25] proved convergence for a nonparametric estimator ĥ for h:

ĥ =
N log N∑N

i=1 Λi
, (1)

where N is the length of the sequence of words and Λi is the match length of the prefix at position i, that is, it is the length of the
shortest subsequence (of words) starting at i that has not previously appeared. (All logarithms are base 2.) If the sequence of words
were randomly shuffled, breaking any long-range structure, this estimator converges to the traditional Shannon entropy on unigrams
(see Supplementary Fig. 1).

The ideas underlying estimators such as Eq. (1) play an important role in the mathematics of data compression algorithms. In-
deed, some authors have used practical compression software to estimate the information content of a text. However, such estimates
tend to be biased, as specific compression implementations (such as gzip) tend to sacrifice small amounts of extra compression to
run much more efficiently. Owing to these approximations, it is important to work directly with the theoretical estimator to more
accurately estimate h, as we have when we applied Eq. (1).

Measuring the flow of predictive information To generalize Eq. (1) to a cross-entropy between two sequences A and B,
we define the cross-parsed match length Λi(A|B) as the length of the shortest subsequence starting at position i of sequence A
not previously seen in sequence B. If sequences A and B are time-aligned, as in timestamped social media posts, then ‘previously’
refers to all of the words of B written prior to ti(A), the time when the ith word of A was posted, according to the timestamp of the
respective tweet. The estimator for the cross-entropy rate is then

ĥ×(A | B) =
NA log NB∑NA
i=1 Λi(A | B)

, (2)

where NA and NB are the lengths of A and B, respectively. An estimator of the relative entropy (or KL-divergence), similar to
Eq. (2), was introduced by Ziv and Merhav [46]. The log term in Eq. (2) has changed to log NB because now B is the ‘database’
(or window, in Lempel-Ziv terms) we are searching over when we compute the match lengths; the NA factor is due to the average
of the Λi’s taking place over A. The cross-entropy tells us how many bits on average we need to encode the next word of A given
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the information previously seen in B. Furthermore, ĥ×(A | A) = ĥ. The cross-entropy can be applied directly to an ego-alter pair by
choosing B to be the text stream of the alter and A the text stream of the ego.

We now wish to generalize the cross-entropy to ĥ×(A | B), estimating the average amount of information needed to encode the
next word of sequence A given the information in a set of sequences B. Take the cross-parsed match length for a set of databases to
be Λi(A | B) = max{Λi(A | B), B ∈ B}, that is, the longest match length over any of the sequences in B. This cross-parsing implies a
new log NAB factor in the estimator, where NAB is the average of the lengths NB (B ∈ B), weighted by the number of times matches
were found in each sequence B ∈ B. (If the same match length occurs for more than one sequence B ∈ B then each such sequence
receives a weight in the average.) The estimator is

ĥ×(A | B) =
NA log NAB∑NA
i=1 Λi(A | B)

, (3)

where NAB =
∑

B∈B wBNB
/∑

B∈B wB and wB is the number of times that matches from A are found in B ∈ B. Note that
∑

B wB ≥ NA

due to possible ties, with equality holding if no ties occur. Note that Eq. (3) reduces to Eq. (2) when |B| = 1.
Equation (3) lets us build the cumulative cross-entropy by appropriate choices of B. Here, we sequentially added alters to the

set B in order of decreasing contact volume (i.e., B = {alters}), to understand how information grows as more alters are made
available. Likewise, Eq. (3) lets us build the transfer entropy-like measures by additionally including the ego within the set B (i.e.,
B = {ego} ∪ {alters}).

We implemented Eqs. (1)-(3) in Python. See code availability statement.

Estimator convergence on our data The estimator given by Eq. (1) has been proven to converge asymptotically under
stationarity assumptions [25]. However, our data are finite, and so we investigated the convergence properties of the estimator
empirically (see Supplementary Figure 1b,c). In general, we observed that the entropy (1) saturates after around 1000 tweets
(approximately 10,000 words). Likewise, the cross-entropy estimator h×(A | B) tends to converge within around 50% of the ego’s
observed lifespan (see Supplementary Note 1.1).

Code Availability
The code used to generate the results of this paper is available from the corresponding authors upon request.

Data Availability
Data that support the findings of this study are available at Figshare.
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