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We propose a model for the social flow of information in the form of text data, which simulates the
posting and sharing of short social media posts. Nodes in a graph representing a social network take
turns generating words, leading to a symbolic time series associated with each node. Information
propagates over the graph via a quoting mechanism, where nodes randomly copy short segments of
text from each other. We characterize information flows from these text via information-theoretic
estimators, and we derive analytic relationships between model parameters and the values of these
estimators. We explore and validate the model with simulations on small network motifs and larger
random graphs. Tractable models such as ours that generate symbolic data while controlling the
information flow allow us to test and compare measures of information flow applicable to real social
media data. In particular, by choosing different network structures, we can develop test scenarios to
determine whether or not measures of information flow can distinguish between true and spurious
interactions, and how topological network properties relate to information flow. Published by AIP
Publishing. https://doi.org/10.1063/1.5011403

Rich datasets on human activity and behavior are now
available, thanks to the widespread adoption of online
platforms such as social media. The primary artifact gen-
erated by users of these platforms is text in the form of
written communication. These symbolic data are invalu-
able for research on information flow between individuals
and across large-scale social networks, but working with
and modeling natural language data is challenging. While
most models of social information flow focus on compart-
ment models, contagion models, or cascades, the richness
of the text data available to researchers underscores the
importance of incorporating the full information present
in text into modeling efforts. In this paper, we propose
a model for how groups of individuals embedded in a
social network can generate streams of text data based
on their own interests and the interests of their neigh-
bors in the network. The goal is to more explicitly capture
the dynamics inherent to human discourse. We show how
to relate parameters in the model to quantities underly-
ing information-theoretic estimators specifically aimed at
understanding information flow between sources of text.
By controlling the graph topology and model parame-
ters, we can benchmark how information flow measures
applied to text deal with spurious interactions and con-
founds.

Recently, considerable effort has taken place to better
understand information flow in dynamical systems and real
datasets.1 On one hand, new measures and algorithms have
been developed to better understand information flow inter-
actions and related phenomena, including transfer entropy,2

symbolic transfer entropy,3 convergent cross-mapping,4 and
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causation entropy.5,6 On the other hand, new large-scale
datasets have allowed researchers to better understand at
scale the spread of information in a complex system, espe-
cially those involving online social networks and social media
such as Twitter.7,8 Especially interesting are studies applying
information-theoretic tools to large-scale social media data,
such as Ver Steeg and Galstyan, who consider the shared
information present in the timings of tweets posted by social
ties on Twitter,9 and Borge-Holthoefer et al., who use sym-
bolic transfer entropy to investigate predictive signals of
collective action such as protests in the time series of the
numbers of tweets posted in different geographic regions.10

These recent studies show that tools developed from infor-
mation theory and dynamical systems theory can successfully
be applied to human dynamics data captured from online
platforms such as Twitter.

Most research on information flow within online media
either considers proxies of information flow, such as track-
ing the spread of particular keywords, or uses information-
theoretic tools focused on the timing of social media posts.9,10

Yet the posts themselves are packed with potentially useful
data: the text generated by users of online platforms is their
primary artifact and, when available for study, should be the
focus of research. Fortunately for the study of information
flow, information theory has a rich history of working with
symbolic data such as text.

Given the importance of focusing on the text data, there is
currently a lack of models for the problem of studying infor-
mation flow as measured from the text generated by users
in a social network. Most work focuses on modeling infor-
mation flow as a type of contagion, cascade, or diffusion
process.7,11–13 These works are invaluable for studying infor-
mation flow but by compartmentalizing nodes into groups that
have or have not adopted an innovation, been “infected,” etc.
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they generally neglect the full richness of the text generated
by users in this setting.

Our goal here is to propose and analyze a simple model
of the discourse underlying the text generation process online.
Nodes within a given graph (representing individuals within
a social network) generate symbolic time series (the time-
ordered text) based on what they and their neighbors in
the network say, and we relate this to information-theoretic
estimators of information flow between the texts of differ-
ent individuals. Doing so provides insights into how well
these estimators can distinguish true versus spurious interac-
tions, detect confounding effects, and help us relate network
topological properties to the features of information flow.

The rest of this paper is organized as follows. In Sec. I, we
discuss background material on entropy estimators for written
text and how they may be used to measure information flow.
In Sec. II, we introduce the quoter model and discuss its dif-
ferent components. In Sec. III, we analyze the quoter model
between two individuals and compare our analytic predictions
with simulations. Section IV extends these simulations to a
number of network structures and investigates the interplay
between network topology and information flow. We conclude
with a discussion of our results and potential future directions
in Sec. V.

I. BACKGROUND

A. Entropy and information flow in text

The information content in a written text can be quanti-
fied with its entropy rate h, the number of additional bits (or
other unit of information) needed on average to determine the
next word14 of the text given past words.15 The entropy rate is
maximized for a text that is completely random such that pre-
ceding words will not give useful information for determining
a subsequent word. Conversely, the entropy rate is zero for
a deterministic sequence of words such that knowledge of
previous words only gives all the information necessary to
specify the subsequent word.

There is a rich history of practical entropy estimators
for text.16–18 The challenge when working with real text is
that there is information in the ordering of words, not just
their relative frequencies—shuffling a text preserves the (uni-
gram) Shannon entropy but destroys much of the information
in the text. To account for the ordering of words, one needs
to evaluate the complete joint (or conditional) distribution of
word occurrences, and estimating these probabilities requires
enormous amounts of data.

Kontoyianni et al.19 proved that the estimator

ĥ = T log2 T
∑T

t=1 !t
= log2 T

!̄
, (1)

converges to the true entropy rate h of a text, where T is the
length of the sequence of words and !t is the match length of
the prefix at position t: it is the length of the shortest substring
(of words) starting at t that has not previously appeared in the
text. (For simplicity, we now omit theˆsymbol distinguishing
the estimator from the true quantity.) Theorems underlying
nonparametric estimators such as Eq. (1) play an important
role in the mathematics of data compression. Indeed, some

authors have even used compression software to estimate the
entropy of text. However, using compression software risks
introducing bias, as specific compression code (such as gzip)
trades off optimal compression rates in order to run much
more efficiently. Due to these trade offs, one should instead
work directly with the theoretical estimator [Eq. (1)] to more
accurately estimate h.

Equation (1) generalizes naturally to a cross-entropy
between two sequences A and B.20,21 To do so, define the
cross-parsed match length !t(A|B) as the length of the short-
est substring starting at position t of sequence A not previously
seen in sequence B. If sequences A and B are time-aligned, as
in a written conversation unfolding over time, then “previ-
ously” refers to all the words of B written prior to the time
when the tth word of A was written. The estimator for the
cross-entropy rate is then

h×(A | B) = TA log2 TB
∑TA

i=1 !i(A | B)
, (2)

where TA and TB are the lengths of A and B, respectively. The
log term in Eq. (2) has changed to log2 TB because now B is
the “database” we are searching over to compute the match
lengths and the TA factor is due to the average of the !t’s tak-
ing place over A. The cross-entropy tells us how many bits on
average we need to encode the next word of A given the infor-
mation previously seen in B. Further, h×(A | A) = h. Despite
a similarity in notation, the cross-entropy is distinct from the
conditional entropy (which requires estimating a joint prob-
ability distribution of A and B, something that is not easy to
estimate from social media text data, for example). The cross-
entropy can be applied directly to text of a pair of individuals
by choosing B to be the text stream of one individual and A
the text stream of the other.

While our focus in this work is on the cross-entropy
between pairs of individuals, h× can be generalized further
to h×(A | B), quantifying the predictive information regard-
ing the text in string A contained within a set of strings B.21

This lets us understand the information flow from multiple
social ties to a single individual. It also allows us to construct
transfer entropy-like measures: h(A) − h×(A | {A, B}) mea-
sures how much if any extra information is present on average
in the past text of B about the future future text of A, beyond
the information already present in the past text of A. Doing
so is important when inferring information flow from data, as
it is important to determine whether or not the information in
B is redundant if one already has the information in A.2,5,6

B. Social information flow

In a previous work, we showed how to use the
cross-entropy [Eq. (2)] as a measure of information flow
between individuals posting to the Twitter.com social media
platform.21 We concatenated the texts of all public tweets for
a given Twitter user into a long stream of text and then applied
the aforementioned entropy and cross-entropy measures to
users, pairs of users, and ego-centric networks consisting of
users and their most frequent contacts. Measuring informa-
tion flow with the cross-entropy naturally incorporates the
temporal ordering of the tweet text and uses all the available
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information in the texts of the individuals, whereas other mea-
surement methods limit themselves to proxies of information
flow, such as tracking the spread of keywords like hashtags or
URLs.

The focus of that work was on measuring information
flow from text data. When developing and applying estima-
tors in such scenarios, it is useful to have plausible models
with which to build examples and test cases. However, most
work modeling information flow has focused on the study
of information as “packets” spreading between individuals,
typically represented in Twitter’s case by the hashtags or
URLs. This allows researchers to apply contagion models,
such as Susceptible-Infected or other compartmental models,
complex contagion models, and more.11,22–24 Contagion mod-
els are very well studied on network topologies, but in this
case they neglect the dynamical processes governing written
communication. The back-and-forth nature of discussions, for
example, may generate far more information flow within the
text than would be measurable from the spread of keywords
alone.

II. THE QUOTER MODEL

We propose the “quoter model” as a simplified way to
capture the dynamics governing the written conversations tak-
ing place between individuals in a social network. The model
consists of N individuals embedded as the nodes V of a social
network G = (V , E) where |V| = N and there are |E | = M
edges connecting those nodes. For generality we take the
graph to be directed such that an edge (i, j) ∈ E represents
communication from node j to node i via the quoting process
described below.

Each member of the graph generates written text over
time, represented as a symbolic time series or “word stream.”
At timestep t, individual i generates a number of new words
according to one of the two mechanisms, growing his or
her word stream. The number of new words at timestep t is
λi(t) ∼ Li(t), where this number is drawn from an integer-
valued length distribution Li(t). This probability distribution
may be time-independent or evolve as a function of time, and
this distribution may vary across users (Li ̸= Lj, j ̸= i) or not
(Li = Lj ≡ L). After choosing the number of words to gener-
ate, the actual words are generated according to one of the two
mechanisms:

1. λi(t) draws with replacement from a vocabulary distribu-
tion Wi (with probability 1 − q ij).

2. A contiguous sequence of λi(t) words are copied from a
random position within the previously written text of a
neighbor j of node i (with probability q ij).

This process is then repeated for all individuals in the net-
work until their text streams have reached a desired length or
a desired number of timesteps have elapsed. The first mecha-
nism is intended to represent the creation of new content while
the second mechanism is the quoter action of the model. The
quote probabilities q ij tune the relative strengths of the two
mechanisms by how often i quotes from the past text of j. We
illustrate one step of the model for a pair of individuals in
Fig. 1.

FIG. 1. The quoter model for the social flow of information. (i) The repeated
occurrences of short quoted passages such as this one throughout a written
conversation indicate information flow. (ii) In the model, words are generated
by individuals at each time step, forming word streams. To model information
flow we use two mechanisms: at each timestep, with probability 1 − q the
ego draws λ new words randomly from a specified vocabulary distribution
W ; otherwise, with probability q the ego copies a passage of length λ taken
from a random position in the past words of the alter.

The idea underlying the second mechanism is that when
two individuals are discussing a topic verbally or in writing,
and they are listening to one another, then there will be a back
and forth of small sequences of common words. The quotes
generated by the second mechanism are not meant to capture
full-length, long form quotations such as retweets, but instead
short shared sequences of text. Alice: “That’s the right way
to go”; Bob: “No, this is the right way.” In this example, the
exchange between Alice and Bob leads to a short quotation of
Alice by Bob (“the right way”) and from this exchange only
we can at least surmise that Bob is probably receiving and
reacting to Alice’s text. Of course, Bob could have responded
in an equivalent way without that short quote. However, over
the course of very long conversations we expect more such
quotations to occur on average, and they will likely occur
more often in conversations when there is more information
flow than in conversations where there is little information
flow.

A. Model components

The main components of the quoter model are (i) the
graph topology, which may be as simple as a single directed
link between two individuals, (ii) the quote probabilities q ij,
(iii) the length distributions Li, and (iv) the vocabulary distri-
butions Wi. We study several graph topologies in this work.
The quote probabilities q ij can be considered as edge weights
on the social network, and there is considerable flexibility in
assigning those weights.

The length distributions Li govern the amount of text
generated per timestep and the total length of the text: the
expected length after t timesteps will be ⟨L⟩ × t. We primar-
ily focus on two cases here, the constant length distribution
L(λt) = δλλt , where δij is the Kronecker delta; and a Poisson
distribution L(λt) = e−λλλt/λt! with mean λ.

The vocabulary distribution Wi gives the relative fre-
quencies of words for individual i. In this work we consider
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two example W ’s. The first is a uniform distribution over a
fixed number of z unique words: W(w) = 1/z, w = 1, . . . , z.
The binary case corresponds to z = 2. The second vocabu-
lary distribution is a basic Zipf’s law that incorporates the
skewed distributions typically observed in real text corpora.25

Here, the probability of a word w depends on its rank rw,
with the most probable word having rank rw = 1. Zipf’s law
then defines word probabilities that obey a power law form
with r: W(w) ∝ r−α

w , where α is a power law exponent. This
distribution is normalized by Hz,α =

∑z
r=1 r−α , the general-

ized harmonic number. This distribution also holds for infinite
vocabularies (z → ∞) so long as α > 1, in which case the
normalization constant converges to the Reimann zeta ζ(α).

III. MODEL ANALYSIS

Here, we study the basic quoter model between two indi-
viduals (referred to as the “ego” and the “alter”) where the
ego copies the alter but the alter does not copy the ego. We
focus on the case of uniform vocabulary distribution W(w) =
1/z, w = 1, . . . , z, and we assume both individuals draw from
the same W , although our analysis is not specific to these
assumptions.

To quantify the flow information from the alter to the ego
via the cross-entropy h×(ego | alter), we need to compute the
mean ! = T−1∑T

t=1 !t, where !t is the length of the shortest
substring of words beginning at position t in the ego’s text
which has not been observed in the text of the alter prior to
“time” t (Sec. I), and T is the total length of the text. To model
!t, we assume that (i) two terms contribute to !t: the mean
! when a quote occurs (call it !quote) and the mean ! when
no quote occurs (call it !random) and (ii) the quote probability
q weights these two possibilities:

!t(ego | alter) = (1 − q )!random + q !quote, (3)

where we have suppressed the dependence on position t in
!random and !quote. We need to determine both !random and
!quote as functions of the vocabulary distribution and the
current amounts of text generated.

A. Prefix matches when not quoting

It is possible as the ego is drawing words from the vocab-
ulary distribution that due to chance a string of words will be
generated that previously appeared in the past text of the alter.
This will depend on the vocabulary distribution and the length
of the alter’s past text.

Suppose the alter has posted a total of t words so far and
the ego has just posted m new words. The probability that one
of the new words posted by the ego matches a random word
previously posted by the alter is

∑
w W(w)2 ≡ d . This is the

probability that two draws from the vocabulary distribution
give the same word, irrespective of the particular word, and is
the Simpson index (also known as the Herfindahl–Hirschman
index) of the vocabulary distribution.26,27 The probability of
at least m new ego words matching with m prior alter words
at a particular location in the alter’s past text is dm. Since
there are approximately t locations in the alter’s text at which
a match may occur (assuming t ≫ m), the expected number
of matches of length m or more is tdm ≡ C(m). Then, the

expected length of the longest match m∗ occurs at the value
of m = m∗ for which C(m∗) ≥ 1 and C(m∗ + 1) < 1. Solving
C(m∗) = 1 for m∗ gives an expected longest match length of
m∗ = ln(t)/ ln(1/d), or

!random = ln(t)
ln(1/d)

+ 1, (4)

since ! is always one more than the match length.

B. Prefix matches when quoting

If a quote of length λ occurs at position t, then !t = λ + 1
only if any words of the ego subsequent to the λ quoted words
do not happen to match the words of the alter subsequent to
the original quoted passage. In other words, even if determin-
istically a match of length λ occurs, !t may be longer due
to chance. Specifically, the probability that !t = λ + 1 + m,
m ≥ 0, is dm(1 − d), as a value of m requires that the next
m words will match and the (m + 1)-th word will not match.
Note that, unlike the previous calculations, this probability
does not involve the total text length of the alter t because
these post-quote matches cannot occur anywhere in the alter’s
text except in the positions following the quoted passage
(neglecting duplicate passages). From this probability, the
expected !t is

∞∑

m=0

(λ + 1 + m) dm(1 − d) = λ + 1 + d
1 − d

, (5)

meaning that, on average, random chance increases !t by an
amount d

(1−d)
.

However, it is not necessarily reasonable to neglect dupli-
cate passages. Indeed, the number of duplicate passages may
be significant for certain combinations of parameters: the
probability that a different location of the alter’s past is the
start of a passage of length λ equal to the randomly chosen
quoted passage is dλ, and the expected number of such dupli-
cate passages within the alter’s text (including the original
passage) is ≈ tdλ + 1. For t = 104, d = 1/5, and λ = 3, for
example, the expected number of duplicates is 17.

The probability for at least m words of the ego’s text
subsequent to the newly quoted passage to also match m
words following the original passage in the alter is dm, so
the expected number of times matches of length m or longer
will occur following any of the duplicate passages in the alter
is ≈ (tdλ + 1)dm. The longest match length m∗ occurs at the
value of m for which the number of these matches is ≈1, or
m∗ = ln(tdλ + 1)/ ln(1/d). Lastly, the expected total match
length when quoting is then λ + ln(tdλ + 1)/ ln(1/d).

However, unlike with !random, adding 1 to this expected
total match length is not an accurate expression for the aver-
age !quote. When λ + ln(tdλ + 1)/ ln(1/d) is much larger
than !random, then the match length !t at that text position
t will almost certainly be due only to the single quoted pas-
sage. This means that the subsequent !t+1 will likely be 1
fewer than !t, because a random match that would extend
!t+1 is unlikely. Likewise, !t+2 = !t − 2, and so forth, until
the match lengths are short enough that random matching is
again probable. Accounting for this, we expect the average
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FIG. 2. Illustration of !t when quoting to demonstrate the relationship
between !random, λ̄, and !quote. Here, we show a single realization of the
model (parameters: q = 1, z = 4, λ = 4). Individual realizations show con-
siderable variability so we also include a binned trend averaged over n = 10
realizations. This trend agrees well with !quote for these parameters. The inset
plot highlights a spike in !t (at t = 421) and how it decays linearly back to
the approximate level of !random.

!quote to be roughly equal to

1

λ̄ − !random + 2

λ̄+1−!random∑

j=0

(̄
λ + 1 − j

)
, (6)

where λ̄ = λ + ln(tdλ+1)
ln(1/d)

. Equivalently, this is the average of
the two endpoints, λ̄ + 1 and !random, and therefore:

!quote = 1
2

[
λ + ln(tdλ + 1)

ln(1/d)
+ ln(t)

ln(1/d)
+ 2

]
. (7)

We illustrate the relationship between !random, λ̄, and !quote

in Fig. 2, showing a single simulation of the model and high-
lighting a spike in !t above !random and how it decays back
down to !random.

With these expressions for !random and !quote, we can
now compute ! and from it the cross-entropy.

C. Cross-entropy

To compute the cross-entropy h× between the ego and
alter requires computing the total ! summed over all posi-
tions in the ego’s text where matches can occur then divid-
ing T ln T by that !: h× = T ln T/!, where ! =

∑T
t=1 !t.

Using the previously derived expected contributions to ! for
the two mechanisms and approximating the sum over the
text positions with an integral give the following expression
for !:

! ≈
∫ T

0
[(1 − q )!random + q !quote] dt

= T
ln(1/d)

{
(1 − q )

(
ln

T
d

− 1
)

+ q
2

[
ln

T
dλ+2

+
(

1
Tdλ

+ 1
)

ln(Tdλ + 1) − 2
]}

, (8)

which can be substituted into T ln T/! to compute the cross-
entropy as a function of q , λ, d , and T .

The limit of large text using Eq. (8) gives

lim
T→∞

h×(ego | alter) = lim
T→∞

T ln T
!

= ln(1/d), (9)

which is the Rényi entropy of the vocabulary distribution:

hα = 1
1 − α

ln

(
∑

w

W(w)α

)

, (10)

with α = 2. Note also that q has dropped out of this limit,
implying that, given sufficient text, the entropy of the model
will be that of the underlying vocabulary distribution only.
However, as we shall see, for finite T , even quite large, q still
plays an important role in the overall cross-entropy.

D. Comparison with simulations

To test our theoretical predictions, we simulate the quoter
model and compared our predicted cross-entropy [substituting
Eq. (8) into T ln T/! and converting to bits] with that com-
puted directly from the simulations [Eq. (2) on the simulated
text sequences]. We simulate the one-link, two-node model
for 103 and 104 timesteps, giving expected text lengths of T =
103λ and T = 104λ, respectively. Here, we choose for both
nodes W(w) = 1/z, w = 1, . . . , z, L(t) = Pois(λ), q ij = q and
q ji = 0 (denoting the ego as i and the alter as j). Overall, we
find reasonable qualitative agreement between our predictions
and the simulations, as shown in Fig. 3. However, there are
some systematic discrepancies. While the absolute difference
in entropies between predictions and simulations is small,
often less than 0.1-0.2 bits, this means that the treatment above
does not capture everything present in the model.

Beyond Fig. 3, which explores the cross-entropy as a
function of q for different λ and d = 1/z parameters, it is
also useful to inspect the two limiting cases of no quotes
(q = 0) and all quotes (q = 1). Figure 4 explores how the
cross-entropy depends on d when q = 0. Since there are no
quotes, we expect no dependence on λ and we indeed see
strong collapse across the simulations and the theory (there is
a slight difference between the curves only because the total
length of the generated text depends on λ). Further, there is
good agreement with predictions (solid lines) except at values
of very low d (equivalently, high z). Agreement improves con-
siderably at higher T although predicted values are still below
those of the simulations. In this case, h× depends entirely on
!random, and the expression for !random [Eq. (4)] primarily
gives only the scaling of !random with accuracy.

The all-quote case is explored in Fig. 5. In this case, we
expect a strong dependence on λ and indeed we see a change
of more than two bits of cross-entropy at the lower diversity
values when moving from λ = 3 to λ = 9. We also see good
agreement between predictions and simulations except at low
d , although in this case agreement improves considerably at
low d for the longer text length.

Overall, we find that our treatment of the model cap-
tures the basic qualitative links between q , d , λ, and the total
text length. Agreement is not perfect, indicating that more
behavior is going on than is being modeled, particularly at
low d , or entropy estimators based on ! are biased for finite
text, or some combination thereof. A more rigorous treatment
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FIG. 3. The theoretical predictions (lines) give qualitative agreement with
simulations (symbols), although there are systematic discrepancies, espe-
cially at lower vocabulary diversities d = 1/z.

FIG. 4. The limiting case of q = 0 for different levels of vocabulary diversity
d =

∑
w W(w)2. There is reasonable agreement between cross-entropy using

Eq. (8) and simulations except at low values of d. Agreement improves with
larger T .

FIG. 5. The limiting case of q = 1 for different levels of vocabulary diversity
d. Symbols denote simulations and lines denote predicted cross-entropy using
Eq. (8). Agreement is reasonable in this case, and agreement improves for
larger T .

of the model may be able to distinguish between these two
possibilities and can extend the analysis to more complex
arrangements than a single link between a pair of individuals.

IV. THE QUOTER MODEL ON NETWORKS

Moving beyond our treatment of a single pair of individu-
als (Sec. II), here we numerically investigate the quoter model
on four simple network topologies (see Fig. 6): A chain of
N nodes where each node copies from the previous node (i),
a fork where one node influences two nodes (ii), a collider
where a node is influenced by two nodes simultaneously (iii),
and larger Erdős-Rényi and Barabási-Albert random graphs
(iv) (not shown in Fig. 6). These topologies allow us to bet-
ter understand, in a simplified context, the interplay between
network topology and the dynamics of information flow as
measured via the cross-entropy. The chain allows us to under-
stand the attenuation of information flow with distance, the
fork and the collider provide simple motifs to investigate con-
founds and spurious links, and the larger graph models can
shed light on how global network properties such as density
can affect information flow.

A. (i) Chain of quoters

We investigate the attenuation of information by simu-
lating the quoter model over a unidirectional chain of nodes
v0, v1, . . . , vN−1, where each node has probability q of quoting
the node directly before them in the chain, except for the first
node in the chain which only draws from W :

q ij =
{

q if i > 0, i = j + 1;
0 otherwise.

(11)
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FIG. 6. Model network topologies. (i) Chain of N quoters, each with unidi-
rectional quote probability q ; (ii) Fork, with quote probabilities q B and q C for
nodes B and C to copy A respectively; (iii) Collider, with quote probabilities
q A and q B for C to copies A and B, respectively.

At each timestep, each node in the chain writes or quotes
λt ∼ Pois(λ = 3) words, each of which is then drawn from
a 1000-word truncated Zipf distribution with exponent α =
3/2. (Results were found to be very similar when using a
uniform distribution with the same number of words.) We
simulate the model on N = 10 nodes for 10,000 timesteps,
so T ≈ 10, 000λ.

Figure 7 shows the cross-entropy of node i from the first
node 0 in the chain, which generates original text. For rea-
sonable values of the quote probability q < 0.5 information
attenuates quickly, with h× having saturated by approximately
the third link in the chain. Only at very high quoting probabili-
ties (q = 0.95) do we observe greater information flow (lower
cross-entropy) for nodes further along the chain.

B. (ii) Fork and (iii) Collider

To investigate how cross-entropy distinguishes between
information flow from different sources, we simulate the
quoter model on the three-node “fork” and “collider” graph
shown in Fig. 6. First, for the fork graph [Fig. 6(ii)], using the
same parameters as above [λt ∼ Pois(λ = 3), w ∼ Zipf(z =
1000, α = 3/2)], we vary the probabilities q B and q C with

FIG. 7. Attenuation of information in a chain of quoters. Cross-entropy
increases (information flow decreases) with both distance from the source
node and decreasing quote probability q , generally saturating for q ≤ 0.5 by
a separation of no more than four steps.

FIG. 8. Information flow on the fork graph as a function of the quote proba-
bilities q B and q C. (Top) We find that the information flow from the source A
to a target (either B or C; C shown only) depends only on the quote probabil-
ity for the source-target link. (Bottom) The target-target link (B to C or C to
B; B to C shown only) shows a mixed dependence on q A and q B. However,
the cross-entropy values are higher than those observed for the source-target
links, for most regions of the (q C, q B)-space. We discretized q B and q C into
steps of 0.05 and interpolated to obtain the level curves in the figures.

which nodes B and C, respectively, copy the source node
A, which generates original content (drawing words from W
only). The top and bottom panels of Fig. 8 show the cross-
entropy of C from A and of C from B, respectively, averaged
over 1000 realizations of the model. As expected, h×(C | A)

shows no dependence on q B and decreases approximately
linearly as the quote probability q C grows (Fig. 8; top).

The dependence of C upon B in the fork is more complex,
however, with the cross-entropy h×(C | B) of the non-existent
link between B and C decreasing with both increasing q B and
q C (Fig. 8; bottom). However, there exists a clear separation
in the values of cross-entropy between the two cases, with
h×(C | B) being significantly larger than h×(C | A) for most
quote probabilities except the region where both q B and q C

are close to 1. Cross-entropy therefore effectively identifies
the direction of real information flow for this model graph.

Due to the fork’s symmetry, the results for h×(B | A) and
h×(B | C) are identical to those shown in Fig. 8. Likewise, the
analogous h×(C | A) and h×(C | B) for the collider network
topology [Fig. 6(iii)] appear similar to the top panel of Fig. 8:
with no dependence between A and B in the collider, h×(C |
A) decreases linearly with q A and shows no dependence on
q B (not shown).

C. (iv) Random networks

Finally, we investigate the quoter model on larger net-
works, modeled as random graphs. We simulate the quoter
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model on Erdős-Rényi (ER)28,29 and Barabási-Albert (BA)30

random graphs. ER graphs are simple models that capture
only the overall density of a network but are a useful starting
point. BA graphs capture the “scale-free” property observed
in real-life social networks. Using graphs of N = 100, we
create directed, weighted networks of varying average node
degree.31 To create directed ER networks, we chose pairs of
nodes i and j and created an edge from i to j with probabil-
ity p. For the BA networks, we used the standard preferential
attachment method with edges pointing in both directions.
This construction means that quoting is always bidirectional
in the BA networks, but not necessarily in the ER networks.
Other options are possible for the BA network, e.g., creat-
ing directed links from newer nodes to older nodes through
the preferential attachment process; however, this would have
rendered these networks a directed tree rather than graph, as
was desired here.

Quote probabilities q ij are chosen from U(0, 1), with
q ii ∼ U(0, 1) representing the probability of a node generat-
ing new content (after normalizing such that q ii +

∑
j q ijAij =

1, where A is the adjacency matrix of the graph). The quoter
model is then run for 5000N timesteps over the network,
updating a randomly chosen node at each timestep, and using
the same vocabulary (W ) and quote-length (L) distributions
as above. At the end of the simulation each node has gener-
ated text of length T ≈ 5000λ = 15, 000 words. We simulate
100 realizations of the network and quoter model dynamics
on both the ER and BA networks.

Information flow on these graphs as a function of the
graph’s average node degree ⟨k⟩ is shown in Fig. 9. As aver-
age degree increases in the network, the average cross-entropy
of a node i from its neighbors j also increases, meaning that
i becomes less predictable from its neighbors with increasing
density. The BA graphs show slightly lower median cross-
entropy, however, with larger variation across realizations.
The presence of high-degree hubs in BA graphs means that
cross-entropy can exhibit a larger range of variation, with the

FIG. 9. Average information carried by edges in a network decreases as net-
work density increases, as evidenced by the increase in cross-entropy. Both
types of networks contain 100 nodes, and boxes represent the distribution of
cross-entropy over 100 realizations each. (Boxplots have been shifted left and
right where they would otherwise overlap, for clarity.)

self probability q ii at hub nodes i to generate new content driv-
ing much of the information flow on the network. The increas-
ing trend of cross-entropy with average node degree indicates
that information “sources” and “sinks” become increasingly
difficult to identify in a network, as the density of connections
increases.

V. DISCUSSION

In this paper, we introduced the quoter model as a simple,
paradigmatic model of the flow of information. Considerable
effort has been put into measuring information flow in online
social media, both from proxies such as tracking keywords
and from information-theoretic tools. Models of the dynamics
underlying these processes are invaluable for better under-
standing information flow, and the goal of our work is to
introduce a model that more directly relates to information
flow in text data than traditional contagion-style models, but
without being overly complicated. Our model mimics at a
basic level the overall dynamics of text streams posted online,
and here we showed that one can derive expressions for the
information flow between written texts as measured via the
cross-entropy.

The analysis we performed here showed good qualitative
agreement with simulations in general, but there remains room
for improvement. Nevertheless, the ability to find tractable
expressions for information-theoretic quantities highlights
how the basic quoter model can provide better insights into
information flow over social networks. Indeed, we proposed
this model because empirical benchmarks for information
flow over social networks are difficult to find. However, as
many dynamic processes can be represented by symbolic time
series, models like the quoter model may even be useful when
studying information flow in more general contexts.

The language generator we studied here is a relatively
simplistic bag-of-words model: individuals simply draw
words from a given vocabulary distribution W . More realistic
models should be explored. One possibility would be a time-
dependent W . For example, one could endow W with a latent
context C: W(w | C) and allow the context to vary (slowly)
over a space of contexts. A Markov chain over this context
space would be one way to introduce dynamic context shifts.
Such a context dependence can then be used to model topical
shifts over the length of a discourse. If two users exhibit the
same context shifts, their vocabulary distributions will tend to
“sync up” “with each other”, and this should lead to a lower
cross-entropy than if contexts were not shared.

This dynamic context shift in quoted discourse suggests
a natural time-based generalization to the model as well. With
quoting behavior likely to occur within a short “attention
span” of the time of the original message, it makes sense
to incorporate a probability of quoting into the model which
decays over time. While the form of this probability likely
introduces an extra parameter, it is plausible that this parame-
ter could be estimated from real data. Future work will explore
the possibility of fitting the quoter model to real datasets.

Lastly, there is much room for future exploration of net-
work topology and its relationship to information flow. As the
quoter model allows us to design “planted” interactions, we
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can implement the quoter dynamics on constructed networks
and then test whether algorithms can successfully infer true
interactions and reject spurious interactions. We did this here
with the fork and collider graphs. Moving beyond those small
motifs, one area of network structure worth exploring in future
work is that of network topologies exhibiting clustering, to
investigate the effect of community structure32 on information
flow.
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