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Abstract—In 2001, Rama Cont introduced a now-widely used
set of ‘stylized facts’ to synthesize empirical studies of financial
time series, resulting in 11 qualitative properties presumed to
be universal to all financial markets. Here, we replicate Cont’s
analyses for a convenience sample of stocks drawn from the U.S.
stock market following a fundamental shift in market regulation.
Our study relies on the same authoritative data as that used by
the U.S. regulator. We find conclusive evidence in the modern
market for eight of Cont’s original facts, while we find weak
support for one additional fact and no support for the remaining
two. Our study represents the first test of the original set of 11
stylized facts against a consistent set of stocks, therefore providing
insight into how Cont’s stylized facts should be viewed in the
context of modern stock markets.

Index Terms—stock markets, stylized facts, time series analysis

I. INTRODUCTION

Researchers for decades have sought and proclaimed to have
found various ‘stylized facts’ to characterize the high-level
behavior of financial markets. These ‘facts’ are then used to
inform and justify models of these markets. One of, if not the
most widely attributed set of stylized facts of financial markets
was written by Rama Cont and published in 2001 [15].

Cont presented a list of 11 stylized facts on price variations
(returns) in financial markets [15]. Cont’s review summarized
research ranging over the decades prior, noting seemingly
common qualitative characteristics of asset returns across
different markets and time frames. It has not been established,
however, whether these qualitative characteristics still hold for
modern markets and whether they should all be expected to
hold for individual stocks for a given time period. In this study,
we examine the most granular trading data publicly available

C.M.V.O., M.T.T.K., and B.F.T. were supported by MITRE’s Financial
Innovation Lab. E.R.C. was supported by the MITRE PhD Fellowship in
Computational Finance within the Complex Systems Center at the University
of Vermont.

over the time period of 18 Oct. 2018 – 19 Mar. 2019, testing
whether a stock in the modern market should be expected to
express Cont’s 11 stylized facts. We find clear support for
eight of the stylized facts, with weak support for one other, as
summarized in Table I. Section II provides further motivation
and background for the study. Section III details our data and
methodology for testing the stylized facts. Section IV gives the
results of these analyses, and, finally, Section V summarizes
takeaways from our results.

II. BACKGROUND

Cont’s stylized facts [15] drew from numerous past results
of Cont and others over the second-half of the 1900’s into the
early 2000’s. Some of the facts were demonstrated through
results in the paper, others cited past results, and a couple
(detailed in Section II-A) do not appear to have been directly
cited or reproduced in the paper. Cont’s review has been
frequently used to benchmark the empirical relevance of agent-
based models to real-world financial markets [6]. Cont himself
was involved in these efforts [23], and numerous ABMs
have similarly replicated multiple stylized facts [43] [48] [29]
[11]. More recently Katahira et al. [30] gave a ‘speculation
game’ model with results reproducing 10 of the 11 facts (all
except Fact #3: Gain/Loss Asymmetry). In [10] and [48],
the stylized facts were used to determine which parameters
produce realistic return series. An assumption implicit in these
practices is that most if not all of the stylized facts should hold
for a given return series.

Since Cont’s set of stylized facts drew from a variety of
results and research groups, no single asset (exchange rate,
stock, index) was used for all 11 facts [15]. The most facts
tested by a single study that we have found is eight, done by
Chakraborti et al. [13] in their review on econophysics. They
gave details of Facts #1, 2, 4, 5, 6, 7, 8, and 10, providing
example results for each of these using intraday returns on
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the French stock BNPP.PA from 1 Jan. 2007 – 30 May 2008.
Determining the extent to which each of the stylized facts
should be expected to hold for a given asset is important for
understanding how the facts should be used in practice. If any
given asset over some time period, which can be viewed as a
singe-path realization of a stochastic process, cannot reliably
be expected to exhibit all 11 facts, alternative interpretations
should be considered. Perhaps stocks on average will exhibit
all 11 properties, in which case comparing the expected value
of a model’s results to the expected value from empirical data
could be more appropriate1.

How the stylized facts are exhibited under different con-
structions of time is also important to establish. Clock-time,
meaning time as measured by a timestamp or date, is most
widely represented in the stylized facts literature. As noted by
Chakraborti et al. [13], this view inherently involves sampling,
and the number of trades in a unit of time can vary widely
period-to-period and stock-to-stock (Table II). Event-time,
using trades as the event in our case, smooths this variability
out, with one trade occurring per unit of time. An event-
based view of time is also natural in the context of market
simulations, making any differentiation between the stylized
facts in clock-time versus event-time crucial to understand
when benchmarking these models.

A. Cont’s Stylized Facts

Below are Cont’s stylized facts as given in [15]:
1) Absence of autocorrelations: “(Linear) autocorrela-

tions of asset returns are often insignificant, except for
very small intraday timescales (≈ 20 minutes) for which
microstructure effects come into play.”

2) Heavy tails: “The (unconditional) distribution of returns
seems to display a power-law or Pareto-like tail, with a
tail index which is finite, higher than two and less than
five for most data sets studied. In particular this excludes
stable laws with infinite variance and the normal distri-
bution. However the precise form of the tails is difficult
to determine.”

3) Gain/loss asymmetry: “One observes large drawdowns
in stock prices and stock index values but not equally
large upward movements.”

4) Aggregational Gaussianity: “As one increases the
timescale ∆t over which returns are calculated, their
distribution looks more and more like the normal distri-
bution. In particular, the shape of the distribution is not
the same at different timescales.”

5) Intermittency: “Returns display, at any time scale, a
high degree of variability. This is quantified by the
presence of irregular bursts in time series of a wide
variety of volatility estimators.”

6) Volatility clustering: “Different measures of volatility
display a positive autocorrelation over several days,
which quantifies the fact that high-volatility events tend
to cluster in time.”

1This is the approach taken by Farmer et al. to validate their ‘Zero-
Intelligence’ model [20]

7) Conditional heavy tails: “Even after correcting returns
for volatility clustering (e.g. via GARCH-type models),
the residual time series still exhibit heavy tails. How-
ever, the tails are less heavy than in the unconditional
distribution of returns.”

8) Slow decay of autocorrelation in absolute returns:
“The autocorrelation function of absolute returns decays
slowly as a function of the time lag, roughly as a power
law with an exponent β ∈ [0.2, 0.4]. This is sometimes
interpreted as a sign of long-range dependence.”

9) Leverage effect: “Most measures of volatility of an
asset are negatively correlated with the returns of that
asset.”

10) Volume/volatility correlation: “Trading volume is cor-
related with all measures of volatility.”

11) Asymmetry in timescales: “Coarse-grained measures
of volatility predict fine-scale volatility better than the
other way around.”

Financial returns were overall found to be heavy-tailed, not
independent and identically distributed (iid), and characterized
by correlations and clustering in behavior. Price changes them-
selves are not claimed to be predicted by any of the stylized
facts. Magnitudes of changes, seen as measures of volatility,
are found to have nontrivial correlations and relationships with
previous behavior. The lack of clear persisting signal on the
raw returns is detailed in Fact #1, measured as a lack of
linear autocorrelation in returns. This fact is reproduced in
the stylized facts paper [15] for event-time returns of the
stock KLM and for the USD/Yen exchange rate. Nonzero
autocorrelation function (ACF) values at the first lag are found
in these and many other intraday results in general, with
possible explanations proposed such as the ‘bid-ask bounce’,
nonsynchronous trading effects, and partial price adjustment
[3]. The effect is found to decay to roughly zero within 15-
minutes by Cont and others in [16] [5] [49].

Some nonlinear transformations of returns, such as taking
their absolute or squared values, provide measures of the
magnitude of price changes. These volatility measures are
found to exhibit persistent positive autocorrelation, in contrast
to the linear ACF just discussed. Cont et al. [16] [18] found
the absolute 5-minute returns of S&P 500 futures to have ACF
values starting above 0.1 and not going below zero for at
least 100 lags. Similar results were found in [13] [17] [33]
[37] [39]. Explicit power-law fits are given for the decay
of autocorrelation in squared and absolute returns in [18]
[32] [33]. Power-law decay of absolute autocorrelation implies
volatility exhibits long memory or is ‘long-range correlated’,
and we would also in that case expect the correlation to not
go to zero or below as the lags increase [36].

The variability of returns is well documented and leads
to the second stylized fact: return distributions’ heavy tails.
Trying to determine the precise distributional form of returns
and their tails is a ‘favorite pastime’ (as Cont put it) in the
literature [15] [24] [25] [35]. Consistently agreed upon [1]
[2] [9] [13] [15] [16] [18] [39] [41] [42], however, is that
returns exhibit kurtosis, the fourth central moment, greater
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than that of a normal distribution. Excess kurtosis indicates a
distribution has heavier tails and a higher peak than a normal
distribution [19]. The financial ABM literature since 2001
has also frequently reported the excess kurtosis of simulated
returns to argue the empirical relevance of a model.

In empirical results, returns were found to be leptokurtic for
timescales up to multiple days, but kurtosis was found to de-
crease overall with timescale [1] [13] [16] [18] [42] [39]. This
property of ‘aggregational Gaussianity’ (Fact #4) was shown
by Chakraborti et al. [13] to occur more quickly in trade-
time than in clock-time, explained as trade-time correcting
for some volatility versus clock-time returns. Tail-heaviness
decreasing but not necessarily disappearing through methods
of volatility correction is summarized in Fact #7, ‘conditional
heavy tails’. Bollerslev et al. [9] detail the ‘kurtosis problem’
of fat-tails remaining in the residuals after applying ARCH-
type models to stock returns. In [1], Andersen and Bollerslev
normalized 5-minute DEM/USD FX returns by an estimate of
the average daily volatility pattern and reduced the kurtosis
from 21.5 to 15.8. Andersen et al. [2], however, found nearly
normal kurtosis values for 5-minute returns of 30 DJIA stocks
after normalizing by their respective realized daily variances.

Taken together, returns’ heavy tails and volatility clustering
lead to the characteristic of returns irregularly displaying
periods of high volatility interspersed with long periods of
relative calm. This ‘intermittency’ is Fact #5, and in much
of the literature it is discussed as being visibly apparent in
the returns series [15] [30] or following directly from these
other facts [15]. Cont [15] discusses the multifractal model
as a possible explanation of intermittency, suggesting possible
multiplicative processes operating across multiple timescales.
Arneodo et al. [5] provide evidence of this, particularly argu-
ing for a multiplicative cascade of information from coarse
timescales to finer timescales. Müller et al. [38] presented
evidence of this ‘asymmetry in timescales’ effect (Fact #11)
in 1997 with a different methodology. They calculated fine
volatility as being the average absolute daily return over a
given week and coarse volatility as the absolute price change
over the full weekly interval. They measured the correlation
between fine volatility and lagged coarse volatility with lags τ
of -1, 0, and 1, finding the correlation at τ = −1 to be larger
than at τ = 1. In similar analysis, Gençay et al. [22] found
low volatility at a long timescale was likely to be followed
by low volatility at a shorter timescale whereas high volatility
did not necessarily show this same ‘vertical dependence’.

Two other correlational findings are given by Facts #9 and
10. In #9, the ‘leverage effect’ expects volatility to be nega-
tively associated with returns. Citing results from Bouchaud
et al. [12] and Pagan [40], Cont specifically describes this
effect as showing a negative correlation between returns and
subsequent squared returns, suggesting negative returns lead to
increased volatility. Correlation of volatility with subsequent
returns was found to be negligible, meanwhile. Variations of
this effect have been noted elsewhere in the literature, however,
and negative (or even nonzero) correlation between returns and
observed volatility is not always found [7].

In Fact #10, volatility is found to be positively correlated
with trading volume. Clark [14] noted this relationship as
far back as the 1970’s when examining cotton prices. The
relationship has been measured over the years through various
means, including taking the correlation between shares traded
and absolute returns over a period of time [26] and measuring
return variance as a function of trades [13] [31] [41] [45].
It has also been proposed that long-range autocorrelation of
trading volume leads to volatility clustering [41].

Finally, ‘gain/loss asymmetry’, the 3rd stylized fact, is per-
haps the least clear to interpret from the detail given by Cont
[15]. This was summarized as larger drawdowns being seen
than upward movements for stock prices and index values. It
is possible this is referring to results given in [15] showing
negative skewness for S&P 500 futures, Dollar/DM Futures,
and Dollar/Swiss Franc futures, each at 5-minute timescales.
Skew implies something slightly different from the fact as
summarized by Cont, however, as it does not necessarily
tell you anything about which tail has larger values. Other
studies have also found positive skew rather than negative [44].
Some of the literature since Cont [15] has examined ‘gain/loss
asymmetry’ from another direction, looking at the amount
of time it takes to see a gain versus a loss above a certain
magnitude. This ‘inverse statistic’ has been used to show that
a stock index will typically achieve a loss more quickly than
a gain of the same magnitude [27], but the same property was
not found for individual stocks [28], with correlated downward
movements across stocks proposed as an explanation for why
the phenomenon could arise in indices [46].

B. The National Market System

Finally, it is possible that some of the stylized facts no
longer hold much descriptive power due to structural changes
to modern markets. The U.S. stock market, known as the
National Market System (NMS), has had numerous regulatory
and technological changes this century. Trades in the NMS
occur through the matching of buyers and sellers of a stock
at a given price point. This can occur on stock exchanges
or off-exchange through brokers, peer-to-peer trading, or at
Alternative Trading Systems (ATSs). As-of 2018, there were
13 stock exchanges split across four geographic locations in
northern New Jersey, and three more exchanges have been
added by the time of this writing. Roughly 30% of trades in
our data occurred at locations other than stock exchanges, such
as through broker internalization or on Alternative Trading
Systems (ATSs). Messages and trades from this array of
venues are consolidated by the three Security Information
Processor (SIP) ‘tapes’. Exchanges and off-exchange venues
must report trades to the SIP tape corresponding to the traded
security based on its listing exchange. This is diagrammed at a
high level in Fig. 1. Tivnan et al. [47] give a detailed summary
of the market’s infrastructure circa 2016, with evidence of
impact from its fragmentation on the prices acted on by
traders.

Each type of trading venue has its own rules and data-
reporting requirements, and each venue reports trades with
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Fig. 1: The U.S. National Market System (NMS) circa 2018. The
data collected here was collected from the SIP feeds by Thesys, the
‘observer’ in Carteret. Image recreated from Van Oort et al. [50]

some (small but nonnegligible) allowed latency2. Systems
executing automated orders are required to sync their clocks to
within 50ms of the time maintained by the National Institute
of Standards and Technology (NIST) in the US [34]. This may
seem a short amount of time, except the NMS is increasingly
operating at speeds approaching the speed of light [4]. Driven
by algorithmic trading, a stock price can have an extreme
rise or drop and rebound back to nearly its original level in
less than a blink of the eye [29]. Andersen et al. [2] noted
for their TAQ data on 30 DJIA stocks over the time-span of
1993-1998 a median inter-trade duration of 23.1 seconds on
average for the stocks in their sample. For contrast, in our
sample, the median inter-trade duration for MSFT was 22µs, a
reduction of more than 103 in magnitude. Given these modern
developments, it is vital to understand whether the high-level
qualitative behavior of the market Cont and others observed
circa 2001 still holds in the market we have today.

III. METHODOLOGY

We test each of Cont’s 11 stylized facts on U.S. stock data
for the date range 18 Oct. 2018 – 19 Mar. 2019 (103 trading
days). We specifically have looked at ten stocks in our current
analysis: AAPL, AMZN, BRK.B, JNJ, JPM, MSFT, NVDA,
TSLA, V, XOM. This list is somewhat arbitrary but consists
of highly traded stocks, providing us with an immense amount
of data and detail of how the market behaved over the time
period examined. Five of these stocks are listed at Nasdaq, five
are listed at NYSE. Our data contains all trades reported for
these symbols over the date range. The data was provided by
Thesys Group Inc., which acted as a tape consolidator in the
NMS and was the sole data provider for the SEC’s MIDAS
in this time period [47]. The Thesys data was collected in the
Nasdaq data center in Carteret, NJ (Fig. 1). Due to the latency
and limitations on clock synchronization mentioned in Section
II-B, the exact order of trades in the data is not definitive, but
our time series provides the perspective of an observer located

2Bartlett and McCrary [8] found trades of DOW30 stocks to be processed
by the SIPs 24ms on average after they were recorded by exchange matching-
engines over the period of 6 Aug. 2015 – 30 Jun. 2016. Off-exchange trades,
meanwhile, are allowed up to 10 seconds to be reported to Trade Reporting
Facilities (TRFs) which then report the trades to the SIPs [21].

in Carteret, NJ, viewing the events of the market as reported
by the SIPs.

We consider two different views of time when constructing
our return time series: clock-time based on timestamp and
event time, with trades as the event. In either view, in order to
aggregate to any level that is more granular than a single trade
per unit of time, we take the price of the last trade to occur
in that time period. Let X(t,∆t) = logP (t,∆t), the log-
price. The log-return at time t and timescale ∆t is defined as
r(t,∆t) = X(t,∆t)−X(t− 1,∆t). Any reference to returns
going forward should be interpreted as meaning log-returns.
Absolute returns refers to the absolute value of r(t,∆t). In
clock-time, time points with no trades will be assumed to have
the same price as the previous time point that had at least one
trade, as no new price information has been received since
then. Note that the return at that time point will therefore be
0.

We limit our time series to the trading day (9:30am - 4:00pm
ET), filtering out ’after-hours’ trading activity. We also filter
out the batch auctions that start and end each day. In our
price time series then, the last price before the close from one
trading day will be followed immediately by the first price
after the open of the next trading day. Due to this construction,
an overnight return between t1 = 16:00 on a given day and
t2 = 9:30 the following day is characteristically different
from a return between two sequential prices within the same
trading day. Therefore, we only consider returns r(t,∆t) such
that t and t − ∆t are within the range 9:30 – 16:00 of the
same trading day. If the last period of any day is incomplete
(e.g. ∆t = 50Min would result in a 40-minute period at the
end of the day), we remove that return from our series. It is
worth noting that the number of data points in a day will vary
inversely with the timescale. Most stocks will have tens if not
hundreds of thousands of trades per day, whereas there are
390 minutes in a 6.5-hour trading day.

Consistent with much of the results and references given by
Cont [15], the main tools used in our analysis are correlation,
the calculation of moments, and describing the distributions
of events. We utilize Pearson sample correlation, denoted as
corr(x, y) going forward, to calculate the correlation values.
In order to judge what is a consistent, nontrivial feature of the
returns in our sample, we look at the extent a result shows
a consistent signal across symbols, with that signal differing
from what is observed for randomly generated ‘white noise’
returns. To generate an instance of white noise returns, we
create 103 days of prices whose trade-level returns are iid,
normally distributed (N(0, 0.000696)), with 250,000 trades
randomly (uniformly) distributed throughout each day. By
generating 100 of these 103-day price series and calculating
results for each, we get a threshold of what type of behavior
arises from random white noise.

IV. RESULTS

Before getting into the specific results for each fact, Table
I gives a high-level summary of our findings. We find clear
evidence for eight of the 11 and weak evidence for Fact #11.
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TABLE I: Breakdown of which facts we found evidence for in clock-
time and event-time. ‘X’ marks indicate strong evidence found for
a fact, while ‘∼’ indicates that only partial or weak evidence was
found.

Fact # Fact Name Clock-time Event-time
1 Lack of linear ACF X X
2 Heavy tails X X
3 Gain/Loss asymmetry
4 Aggregational Gaussianity X X
5 Intermittency X X
6 Volatility Clustering X X
7 Conditional heavy tails X X
8 Slow decay of abs. ACF ∼ X
9 Leverage effect
10 Volume/volatility corr. X
11 Asymmetry in timescales ∼

Nuances to these results are unpacked in detail in the below
subsections.

A. Linear Autocorrelation of Returns

Stylized Fact #1 expects linear autocorrelation in returns
to be “insignificant, except for very small intraday timescales
(≈ 20 minutes) for which microstructure effects come into
play.” [15]. The linear autocorrelation function (ACF) is
C(τ,∆t) = corr(r(t,∆t), r(t + τ,∆t)). Shown in Fig. 2,
linear autocorrelation of the 1-minute returns is found to be
rather weak and difficult to differentiate from white noise
past lags of about eight minutes. The first-lag ACF values
are negative and outside the range of the white noise returns.
Past the first lag, the sign of the ACF varies by symbol. The
magnitudes of the correlations go to zero, although not all are
within the range of white noise until roughly the ninth lag.

At the trade-level, we see negative ACF values in the first
lag, characteristic of the so-called ‘bid-ask bounce’ [3] [15].
Starting between -0.25 and -0.5 at the first lag, the ACF goes
to zero within the next few lags. By lag τ = 4, at least some
of the symbols have positive ACF while others are negative.
Due to the large number of observations in this timescale, the
white noise levels are very small, and the observed values fall
outside those thresholds. Given this, we rely on the fact that
the sign of the ACF varies by the symbol and is relatively
small (below 0.02 for τ > 10) to argue that linear dependence
is unpredictable past the first lag and weak past the first ten
lags.

B. Heavy Tails and Aggregational Gaussianity

Cont’s 2nd fact expects return distributions to exhibit heavy
tails. As done by Cont in [15] [16] [18], we examine the fourth
central moment of returns, kurtosis. The kurtosis provides
a measure of the tailedness of a distribution. We calculate
kurtosis as defined below:

K(∆t) =
〈(r(t,∆t)− 〈r(t,∆t)〉)4〉

σ(∆t)4
− 3,

where σ(∆t)2 is the variance of the returns. Note that this
definition of kurtosis subtracts 3 in order for the normal dis-
tribution to have a kurtosis of zero. Positive kurtosis therefore
means a distribution displays a sharper peak and heavier tails

Fig. 2: Linear autocorrelation of returns.

than a normal distribution. Similar to Cont et al. [18] [42], we
plot the kurtosis as a function of j∆t, with the expectation
being for K(j∆t) to be positive but decreasing as j increases.

We see the expected excess kurtosis in clock-time and event-
time, as shown in Fig. 3. For ∆t = 1Min, the kurtosis values
range in magnitude from 10 to 103 depending on the symbol,
with an overall negative trend as the timescale increases. The
exception to this trend is the symbol JNJ, whose kurtosis
stays higher than the other symbols and is actually higher for
∆t = 60Min than ∆t = 1Min. All symbols stay above the
range of the Gaussian white noise returns, as shown by the
red line in the plots. Both these features are as expected by
Fact #4, ‘aggregational Gaussianity’, with past results finding
return kurtosis to decrease with timescale but stay positive for
timescales of up to multiple days [39] [18] [42].

The event-time returns exhibit heavy tails and aggregational
Gaussianity even more clearly than clock-time. The kurtosis
of the trade-level returns ranges from around 102 to more than
106 depending on the symbol. Through aggregation in event-
time, we see kurtosis decrease in a nearly monotonic fashion,
going below K(N) = 1 and nearing the levels of Gaussian
white noise for N ≥ 2500. In clock-time, there are more than
2500 trades in fewer than 30-minutes for even our lowest-
traded stock (BRK.B, Table II), and ∆t = 15Min returns in
clock-time still exhibit heavy tails, as discussed above. Volume
provides a proxy for volatility (as discussed later for Fact #10
in Section IV-G), and as such viewing returns in event-time
is one method of correcting for volatility in the return series.
Through this method of volatility correction, we see the return
distributions converge more quickly to the normal distribution
as a function of timescale.

This latter finding is in keeping with Cont’s 7th stylized
fact, conditional heavy tails. We can further test this property
by normalizing the returns by their mean and variance on a
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TABLE II: Stats on the number of trades in a minute.

Symbol Mean Variance Kurtosis
AAPL 648.06 366851.26 102.90
MSFT 603.67 272404.60 50.42
AMZN 391.88 127703.16 53.59
NVDA 369.12 121236.91 56.33
BRK.B 99.83 6606.73 57.60
TSLA 233.00 67692.21 56.37
JNJ 165.32 30041.24 79.54
JPM 281.42 45062.16 64.54
V 192.65 22253.93 53.18
XOM 210.46 29874.76 102.19

daily basis. More specifically, let T denote the trading day t
is in. We then define the normalized returns as:

r̂(t,∆t) =
r(t,∆t)− µ(T,∆t)

σ(T,∆t)
,

where µ(T,∆t) = 〈r(t ∈ T,∆t)〉 and
σ(T,∆t) = 〈(r(t ∈ T,∆t) − µ(T,∆t))2〉. The kurtosis for
the normalized returns as a function of timescale is shown
in Fig. 4. We see that daily normalization does reduce the
kurtosis from the unconditional returns while still leaving
some excess kurtosis at small timescales. This is exactly as
expected from Cont’s description of conditional heavy tails.
As we increase the timescales, both the calendar- and event-
time kurtosis values go to zero and even slightly negative. The
average kurtosis of the normalized returns is within the range
of Gaussian white noise for ∆t ≥ 15Min (for comparison,
Andersen found similar at 5-minute timescale in the 1990’s
[2]).

C. Gain/Loss Asymmetry

Cont details his 3rd stylized fact (gain/loss asymmetry)
as prices experiencing larger drawdowns than upward move-
ments. As mentioned in Section II, it is not exactly clear

Fig. 3: Kurtosis as a function of timescale.

Fig. 4: Kurtosis of returns normalized by the daily variance.

what results were being referenced for this fact. Under some
interpretations, returns should be expected to show negative
skews, with skew measured as:

S (∆t) =
〈(r (t,∆t)− 〈r (t,∆t)〉)3〉

σ (∆t)
3 .

We do not see this property consistently across symbols for
1-minute or trade-level returns, as shown in Table III.

We considered a more literal read of Cont’s details for this
fact as well, from which we would expect to see larger losses
than we do gains. We measured the percentage of returns
that are negative versus positive for different cutoffs. For a
given timescale and quantile q, the cutoff is that quantile of
a symbol’s absolute returns in the timescale. The expectation
would be for most of the extreme returns to be losses and
for this to be more true as the quantile-cutoff gets closer
to the 100th percentile. We instead found more than half of
the symbols having more extreme gains than losses for most
quantiles3. We therefore do not find evidence of a gain/loss
asymmetry effect in clock-time or event-time in our data.

3Shown in our supplementary material

TABLE III: Skew of 1-minute and trade-level returns.

Symbol 1-minute Skew Trade-level Skew
AAPL 0.32 0.01
MSFT 0.32 0.00
AMZN -0.21 0.63
NVDA 0.21 -0.01
BRK.B -0.13 -0.17
TSLA -0.24 -0.17
JNJ 1.32 0.10
V 0.37 0.12
XOM 0.35 0.18
JPM -0.22 -0.00
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D. Volatility Clustering

Cont’s 6th stylized fact expects volatility to cluster in
time. We calculate volatility clustering by looking at the
autocorrelation of absolute returns. Similar to linear ACF, let
C0 (τ) = corr (|r (t,∆t) |, |r (t+ τ,∆t) |) . The expectation is
for C0 (τ,∆t) > |C (τ) | and for C0 (τ) to asymptotically go
to zero, with a decay that looks roughly linear on a log-log
plot. This latter property, a power-law decay of autocorrelation,
is claimed in the details of Fact #8. As shown in Fig. 5,
absolute ACF of 1-minute returns starts above the values
we saw for linear autocorrelation (Section IV-A) and remain
consistently outside the range of white noise for all 300 lags
tested. In log-log time, the shape of the decay appears to be
sub-linear, although this path is noisier for some symbols than
others. A couple symbols have absolute ACF near the levels
of white noise by the last lags.

In trade-time, the absolute ACF is around the same level as
the 1-minute returns on average but with a different shape in
the subsequent decays of this effect. The rate of decay appears
to slow after the first few lags and level out for more than 1000
lags before either continuing or hitting an exponential cutoff.
After about 3000 lags, a couple stocks dip below the white-
noise line while others stay above 0.01. An exponential cutoff
occurs for a few stocks at differing places in the later lags.
The overall path suggests a slower than exponential decay, or
‘long-memory’ of volatility in trade-time. Note, however, that
even though the clock-time results show a sub-linear trend in
log-log scale they stay higher on average than the event-time
results for the lags tested4.

4There are also more than 10,000 trades in 200 minutes on average (Table
II)

Fig. 5: Autocorrelation of absolute returns.

E. Intermittency

As detailed in Section II, the property of intermittency
follows from and is intimately tied to volatility clustering and
heavy tails in the literature. We attempt one additional measure
of intermittency, however, through examining the distribution
of interarrival times of extreme price moves. Specifically, con-
sider the 99th-percentile biggest absolute returns for a given
symbol, which we will denote N0.99,∆t. We can then count
the number of these returns we see in a given period of time,
with greater variability providing a measure of intermittency.
We show these extreme returns occur more variably than they
would if arising from a Poisson distribution by measuring their
Fano factor. The Fano factor is defined as

F (∆t) =
σ2
N0.99,∆t

〈N0.99,∆t〉
,

the ratio of the variance to the mean for the number of
extreme returns in a period. This ratio would be 1 for a
Poisson distribution, but we see this is not the case in Table
IV. The Fano factor is greater than one for extreme trade-
level returns in 1-minute periods as well as the extreme 1-
minute returns in 30-minute periods. We furthermore found
the distribution of interarrival times between intraday extreme
returns to show excess kurtosis5. From these findings, along
with the heavy-tails and volatility clustering already discussed,
we see evidence of intermittency in clock-time and event-time.

F. Leverage Effect

Cont’s 9th stylized fact asserts that volatility is negatively
correlated with the returns for an asset. We measure the
leverage effect (Fact #9) as Cont laid out in [15], drawing
from the results of Bouchaud et al. [12] and Pagan [40].
This approach looks simply at the correlation between returns
and lagged volatility, with volatility measured as the squared
returns: L (τ,∆t) = corr

(
|r (t+ τ,∆t) |2, r (t,∆ (t))

)
. The

expectation is for L (τ) to be negative for τ = 1 and to be
larger with positive τ than for the corresponding −τ .

We find no clear trend to the correlation values across
symbols. There are varying strengths and signs to the correla-
tions at each lag, suggesting they might arise from specific

5Shown in our supplementary material

TABLE IV: Fano factor of extreme returns. For returns with mag-
nitudes in the 99th-quantile, we measured the Fano factor of the
number of extreme returns in a coarse period of time. For 1-minute
returns, the coarse period was 30-minutes, for trade-level returns, the
coarse period was 1-minute.

Symbol 1-min Returns Trade Returns
AAPL 2.11 311.38
MSFT 2.46 126.51
AMZN 2.99 108.11
NVDA 3.50 102.21
BRK.B 1.98 15.79
TSLA 3.55 67.16
JNJ 3.76 53.90
JPM 2.56 51.75
V 2.55 62.21
XOM 2.12 26.78
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variation in the path of a given symbol’s price over our
observation period. For some symbols, there is an interesting
symmetry where L (−1) ≈ −L (1). This also goes against
the descriptions from Cont [15] and Bouchaud et al. [12],
who described the relationship between returns and negatively
lagged volatility as being largely insignificant. Overall, we
do not see the expected direction of the leverage effect
relationship, nor do we see any clear trend in this relationship
across the symbols.

G. Volume/Volatility Correlation

The relationship between volume and volatility is Cont’s
10th stylized fact and asserts a positive correlation between
volume and volatility. We examine this by taking the corre-
lations of the volume of shares6 in a period with the lagged
absolute returns. Indeed, in clock-time we do see a strong,
persistent correlation between shares traded and volatility for
each of the symbols. We see the correlation values stay above
the correlation seen for white noise returns for most positive
and negative lags tested. In other words, volume correlates
strongly with lagged volatility and vice versa. In event-time,
most symbols show a weak relationship between share volume
and volatility, synchronously and at a lag of τ = 1. At all
other lags (including negative lags) the relationship is roughly
zero for all symbols. JPM has a much stronger relationship
at both of these lags, but it also has virtually no correlation
at any lag besides τ = 0 or 1. These results give some
explanation towards the differences in how trade-level and
clock-time returns behave.

6In clock-time, correlation between the volume of trades and volatility was
found to be very similar to that between shares and volatility.

Fig. 6: Leverage effect, measured as the correlation between r (t,∆t)
and r (t+ τ,∆t)2.

Fig. 7: Share volume versus lagged volatility.

H. Asymmetry in Timescales

The final stylized fact examines the asymmetry of the flow
of information across timescales. In clock-time, we consider
∆t = 1Min and ∆T = 30Min as our fine and coarse
timescales, respectively. In event-time, we use trade-time as
∆t and N = 1000 as our coarse timescale ∆T . We calculate
A (τ) = corr

(
|r (t ∈ T,∆T ) |, |r (T + τ,∆T ) |

)
, as done by

Müller et al. [38]. We measure the asymmetry by differencing
the correlation at the corresponding positive and negative lags
τ . The expectation is for correlation at the negative lags to be
larger than at the corresponding positive lags for at least a few
steps.

We first of all see a strong relationship between coarse-
grained volatility and fine-grained volatility, synchronously
and at a lag, for each timescale and perspective (Fig. 8). As
in Müller et al. [38], the relationship is strongest at lag τ = 0.
Comparing positive to negative lags gives an indication of
a possible causal relationship, and we do see a slight edge
given to the negative lags over the positive lags in clock-time.
The smallest values of A(1,∆t)−A(−1,∆t) are around the
range seen from white noise, however, which must be kept
in mind despite the consistent signal seen across symbols.
After the first lag, the effect is approximately zero, with vary-
ing asymmetries depending on symbol, lag, and perspective.
The asymmetry effect is not found in event-time, with the
difference A(1, N) − A(−1, N) being positive or negative
depending on the symbol. Furthermore, when we tested clock-
time results with 10-minutes as the coarse timescale, we found
no consistent asymmetry across symbols7. We therefore only
have a consistent trend for one lag in one timescale, calling
into question the strength of this effect.

7Given in our supplementary materials
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(a) 1-minute versus lagged 30-minute volatility.

(b) Trade versus lagged 1000-trade volatility.

Fig. 8: Average fine-grained volatility versus lagged coarse-grained
volatility.

I. Discussion

As summarized in Table I, we have shown evidence for
eight of Cont’s 11 stylized facts holding true in general
for each of the 10 stocks tested, with weak evidence in
support of one other fact. Some of these facts are better
expressed in clock-time than event-time, however, and vice
versa. We show correlation between volume and volatility
(Fact #10) in clock-time, with limited to no support found
in the trade-level returns. Only weak results are found for
asymmetry in timescales (Fact #11), with slight asymmetry
only found for one timescale. Trade-level returns show a
slower decay of absolute autocorrelation than 1-minute returns,
more in keeping with the power-law decay claimed by Fact
#8. Aggregational Gaussianity (Fact #4) is also more clearly
expressed in event-time than clock-time, although the property
is overall expressed in both clocks.

The measures examined for Facts #3 and #9 do not provide
evidence of gain/loss asymmetry or the leverage effect being
present in general for individual stocks. In contrast to the
claims of these facts, skew and correlation of returns with
volatility were both found to vary in sign and strength depend-
ing on the symbol and timescale. The signs of the largest price
moves were also not found to tend negative in our sample. Past
research using measures that look at the motion of multiple
stocks together (such as an index or the average over multiple
stocks) have found support for these facts, however [12] [27]
[28] [46]. Future research could look at whether these facts
might hold for groups of stocks (e.g. indices) collectively
in modern markets. Nevertheless, our results indicate that
an individual stocks should not be assumed to express these

properties in general.
Finally, the analysis here focuses on the SIP feeds inclusive

of trades that occurred on stock exchanges and in other venues.
Off-exchange trades were found to lead to some of the noisy
signals in our results, raising the question of how differently
they behave from the trades occurring on exchanges. Future
work could examine the off-exchange trades to test whether
they exhibit the same set of stylized facts on their own

V. CONCLUSION

Cont’s original set of stylized facts [15] emerged from a
synthesis of empirical studies, each study focused on a market
which existed prior to 2001. As demonstrated elsewhere in
previous studies, the technological arms race and resulting
market fragmentation in the intervening decades since Cont’s
study fundamentally changed the dynamics of the U.S. stock
market [29] [47]. Motivated by these market changes to revisit
Cont’s original study, we find strong evidence for eight of
Cont’s original set of 11 stylized facts. A robust set of
stylized facts serves at least two distinct communities. For
the community of financial regulators, the set of stylized facts
provides guideposts against which to assess the impacts of
regulatory reform, both the intended and unintended impacts.
For the scientific community, the set of stylized facts provides
the guideposts for the design, development, test and calibration
for the next generation of market models.
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